Relationships between sacral, lumbar and thoracic spine position and trunk mobility in the sagittal plane in young adults
DOI:
https://doi.org/10.55225/hppa.445Keywords:
spinal curvatures, sagittal plane, sacral position, spinal mobilityAbstract
Aim of the study: The aim of the study was to assess the relationship between the position of the sacrum, lumbar and thoracic spine and the mobility of the trunk in the sagittal plane in young women and men.
Material and methods: 64 students (33 women and 31 men) were studied. The mean age in the study group was 22.94 ± 1.51 years. The following tests were performed on each subject once: measurement of height and weight, assessment of spinal alignment and mobility in the sagittal plane using Zebris Pointer.
Results: The results obtained were analyzed using appropriate statistical tools. Statistically significant correlations were obtained: in the alignment of the sacrum in relation to the lumbar spine (strong correlation), in the alignment of the lumbar spine in relation to the thoracic spine and, in the male group only, between the alignment of the thoracic spine and mobility in the direction of flexion in the thoracic segment (moderate correlation).
Conclusions: In women, horizontal sacral alignment coexisting with deepened lordosis was most frequently observed. In addition, women were more likely to have a deepened thoracic kyphosis, less range of motion in the direction of thoracic flexion and extension, and greater mobility in the direction of lumbar flexion and extension than men. In men, the vertical alignment of the sacrum was accompanied by a shallowing of the physiological lordosis. In addition, in this group, a decrease in lordosis influenced an increase in movement to flexion in the thoracic spine. When planning a physiotherapy exercise program for a person in whom abnormalities in the alignment of the lumbopelvic complex have been noted, an individual exercise program should be selected. The study should take into account not only the evaluation of the alignment of the lumbosacral spine, but also the mobility of the segments above and below the examined area taking into account intergender differences.
Downloads
References
Bochenek A, Reicher M. Anatomia człowieka. T. 1. Warszawa: Wydawnictwo Lekarskie PZWL; 2008. Google Scholar
Szymański A. Kręgosłup i stawy. Ossa: Wydawnictwo Dom na Wsi; 2013. Google Scholar
Walaszek R, Kasperczyk T, Magiera L. Diagnostyka w kinezyterapii i masażu. Kraków: Biosport; 2007. Google Scholar
Comerford M, Mottram S. Kinetic control. Ocena i reedukacja niekontrolowanego ruchu. Wrocław: Edra Urban & Partner; 2017. Google Scholar
Sahrmann S, Azevedo DC, Dillen LV. Diagnosis and treatment of movement system impairment syndromes. Braz J Phys Ther. 2017;21(6):391-399. doi: 10.1016/j.bjpt.2017.08.001. DOI: https://doi.org/10.1016/j.bjpt.2017.08.001 Google Scholar
Wnuk A, Król A, Polak M, Szczygieł E, Mańko G. Aktywność mięśnia poprzecznego brzucha i długość wybranych mięśni kompleksu lędźwiowo-miednicznego w różnych typach ustawienia miednicy wśród młodych kobiet. Polish J Sport Med. 2015;31(3):163-171. doi: 10.5604/1232406X.1179526. Google Scholar
Lee D. Obręcz biodrowa. Badanie i leczenie okolicy lędźwiowo-miedniczno-biodrowej. Warszawa: DB Publishing; 2005. Google Scholar
Kowalski IM, Protasiewicz-Fałdowska H, Dwornik M, Pierożyński B, Raistenskis J, Kiebzak W. Objective parallel-forms reliability assessment of 3 dimension real time body posture screening tests. BMC Pediatr. 2014;14:221. doi: 10.1186/1471-2431-14-221. DOI: https://doi.org/10.1186/1471-2431-14-221 Google Scholar
Takács M, Orlovits Z, Jáger B, Kiss RM. Comparison of spinal curvature parameters as determined by the ZEBRIS spine examination method and the Cobb method in children with scoliosis. PLoS One. 2018;13(7):e0200245. doi: 10.1371/journal.pone.0200245. DOI: https://doi.org/10.1371/journal.pone.0200245 Google Scholar
Godek P. Diagnostyka różnicowa odcinka lędźwiowego kręgosłupa i stawu krzyżowo-biodrowego – część 2. Praktyczna Fizjoterapia i Rehabilitacja. 2018;92(3). Google Scholar
Kapandji AI. Anatomia funkcjonalna stawów. T. 3: Kręgosłup, miednica, głowa. Wrocław: Edra Urban & Partner; 2018. Google Scholar
Lewit K. Terapia manualna w rehabilitacji chorób narządu ruchu. Kielce: ZL Natura; 2001. Google Scholar
Rakowski A. Terapia manualna holistyczna. Poznań: Centrum Terapii Manualnej; 2017. Google Scholar
Górniak K, Lichota M. Ukształtowanie przednio-tylnych krzywizn kręgosłupa studentów filii AWF w Białej Podlaskiej. Rocznik Lubuski. 2018;44(2a):129-139. Google Scholar
Grabara M. Spinal curvatures of yoga practitioners compared to control participants: A cross-sectional study. Peer J. 2021;9:e12185. doi: 10.7717/peerj.12185. DOI: https://doi.org/10.7717/peerj.12185 Google Scholar
Król A, Polak M, Szczygieł E, Wójcik P, Gleb K. Relationship between mechanical factors and pelvic tilt in adults with and without low back pain. J Back Musculoskelet Rehabil. 2017;30(4):699-705. doi: 10.3233/BMR-140177. DOI: https://doi.org/10.3233/BMR-140177 Google Scholar
Hu P, Yu M, Sun Z, et al. Analysis of Global Sagittal Postural Patterns in Asymptomatic Chinese Adults. Asian Spine J. 2016;10(2):282-288. doi: 10.4184/asj.2016.10.2.282. DOI: https://doi.org/10.4184/asj.2016.10.2.282 Google Scholar
Demir M, Gumusburun E, Seringec N, Cicek M, Ertugrul R, Guneri B. Radiographic analysis of the lumbar and sacral region angles in young Turkish adults. J Pak Med Assoc. 2018;68(8):1212-1216. Google Scholar
Yukawa Y, Kato F, Suda K, Yamagata M, Ueta T, Yoshida M. Normative data for parameters of sagittal spinal alignment in healthy subjects: an analysis of gender specific differences and changes with aging in 626 asymptomatic individuals. Eur Spine J. 2018;27(2):426-432. doi: 10.1007/s00586-016-4807-7. DOI: https://doi.org/10.1007/s00586-016-4807-7 Google Scholar
Pizones J, García-Rey E. Pelvic motion the key to understanding spine-hip interaction. EFORT Open Rev. 2020;5(9):522-533. doi: 10.1302/2058-5241.5.200032. DOI: https://doi.org/10.1302/2058-5241.5.200032 Google Scholar
Cho IY, Park SY, Park JH, Kim TK, Jung TW, Lee HM. The Effect of Standing and Different Sitting Positions on Lumbar Lordosis: Radiographic Study of 30 Healthy Volunteers. Asian Spine J. 2015;9(5):762-769. doi: 10.4184/asj.2015.9.5.762. DOI: https://doi.org/10.4184/asj.2015.9.5.762 Google Scholar
Chevillotte T, Couderrt P, Cawley D, et al. Influence of posture on relationships between pelvic parameters and lumbar lordosis: Comparison of the standing, seated, and supine positions. A preliminary study. Orthop Traumatol Surg Res. 2018;104(5)565-568. doi: 10.1016/j.otsr.2018.06.005. DOI: https://doi.org/10.1016/j.otsr.2018.06.005 Google Scholar
Li Y, Sun J, Wang G. Lumbar lordosis morphology correlates to pelvic incidence and erector spinae muscularity.Sci Rep. 2021;11(1):802. doi: 10.1038/s41598-020-80852-7. DOI: https://doi.org/10.1038/s41598-020-80852-7 Google Scholar
Husson JL, Mallet JF, Parent H, et al. The lumbar-pelvic-femoral complex: Applications in spinal imbalance. Orthop Traumatol Surg Res. 2010;96(4):S1-S9. doi: 10.1016/j.otsr.2010.03.006. DOI: https://doi.org/10.1016/j.otsr.2010.03.006 Google Scholar
Stolarczyk A, Stępiński P, Maciąg B, et al. Relacje miednica–kręgosłup w kontekście pierwotnej endoprotezoplastyki stawu biodrowego – praktyczne aspekty. Praktyczna Ortopedia i Traumatologia. 2021;23. Google Scholar
Legaye J. Analysis of the Dynamic Sagittal Balance of the Lumbo-Pelvi-Femoral Complex. In: Klika V, ed. Biomechanics in Applications. London: IntechOpen; 2011. doi: 10.5772/19608. DOI: https://doi.org/10.5772/19608 Google Scholar
Boulay C, Tardieu C, Hecquet J, et al. Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J. 2006;15(4):415-422. doi: 10.1007/s00586-005-0984-5. DOI: https://doi.org/10.1007/s00586-005-0984-5 Google Scholar
Earls J. Urodzony, aby chodzić. Ciało w ruchu a efektywność mięśniowo-powięziowa. Poznań: Wydawnictwo Wyższej Szkoły Edukacji i Terapii; 2017. Google Scholar
Esola MA, McClure PW, Fitzgerald GK, Siegler S. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine (Phila Pa 1976). 1996;21(1):71-78. doi: 10.1097/00007632-199601010-00017. DOI: https://doi.org/10.1097/00007632-199601010-00017 Google Scholar
Kim H-J, Chung S, Kim S, et al. Influences of trunk muscles on lumbar lordosis and sacral angle. Eur Spine J. 2006;15(4):409–414. doi: 10.1007/s00586-005-0976-5. DOI: https://doi.org/10.1007/s00586-005-0976-5 Google Scholar
Olson KA. Terapia manualna kręgosłupa. Wrocław: Edra Urban & Partner; 2016. Google Scholar
Turoń-Skrzypińska A, Tomska N, Ptak M, et al. Impact of sitting position on the formation of spinal curvatures in the sagittal plane of taxi drivers-preliminary report. J Educ Health Sport. 2018;8(4):326-337. https://apcz.umk.pl/JEHS/article/view/5437. Google Scholar
Briggs AM, van Dieën JH, Wrigley TV, et al. Thoracic kyphosis affects spinal loads and trunk muscle force. Phys Ther. 2007;87(5):595-607. doi: 10.2522/ptj.20060119. DOI: https://doi.org/10.2522/ptj.20060119 Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Katarzyna Wódka, Alicja Michalczyk, Agnieszka Jankowicz-Szymańska
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.