Relationships between sacral, lumbar and thoracic spine position and trunk mobility in the sagittal plane in young adults

Authors

DOI:

https://doi.org/10.55225/hppa.445

Keywords:

spinal curvatures, sagittal plane, sacral position, spinal mobility

Abstract

Aim of the study: The aim of the study was to assess the relationship between the position of the sacrum, lumbar and thoracic spine and the mobility of the trunk in the sagittal plane in young women and men.
Material and methods: 64 students (33 women and 31 men) were studied. The mean age in the study group was 22.94 ± 1.51 years. The following tests were performed on each subject once: measurement of height and weight, assessment of spinal alignment and mobility in the sagittal plane using Zebris Pointer.
Results: The results obtained were analyzed using appropriate statistical tools. Statistically significant correlations were obtained: in the alignment of the sacrum in relation to the lumbar spine (strong correlation), in the alignment of the lumbar spine in relation to the thoracic spine and, in the male group only, between the alignment of the thoracic spine and mobility in the direction of flexion in the thoracic segment (moderate correlation).
Conclusions: In women, horizontal sacral alignment coexisting with deepened lordosis was most frequently observed. In addition, women were more likely to have a deepened thoracic kyphosis, less range of motion in the direction of thoracic flexion and extension, and greater mobility in the direction of lumbar flexion and extension than men. In men, the vertical alignment of the sacrum was accompanied by a shallowing of the physiological lordosis. In addition, in this group, a decrease in lordosis influenced an increase in movement to flexion in the thoracic spine. When planning a physiotherapy exercise program for a person in whom abnormalities in the alignment of the lumbopelvic complex have been noted, an individual exercise program should be selected. The study should take into account not only the evaluation of the alignment of the lumbosacral spine, but also the mobility of the segments above and below the examined area taking into account intergender differences.

Downloads

Download data is not yet available.

Bochenek A, Reicher M. Anatomia człowieka. T. 1. Warszawa: Wydawnictwo Lekarskie PZWL; 2008.   Google Scholar

Szymański A. Kręgosłup i stawy. Ossa: Wydawnictwo Dom na Wsi; 2013.   Google Scholar

Walaszek R, Kasperczyk T, Magiera L. Diagnostyka w kinezyterapii i masażu. Kraków: Biosport; 2007.   Google Scholar

Comerford M, Mottram S. Kinetic control. Ocena i reedukacja niekontrolowanego ruchu. Wrocław: Edra Urban & Partner; 2017.   Google Scholar

Sahrmann S, Azevedo DC, Dillen LV. Diagnosis and treatment of movement system impairment syndromes. Braz J Phys Ther. 2017;21(6):391-399. doi: 10.1016/j.bjpt.2017.08.001. DOI: https://doi.org/10.1016/j.bjpt.2017.08.001   Google Scholar

Wnuk A, Król A, Polak M, Szczygieł E, Mańko G. Aktywność mięśnia poprzecznego brzucha i długość wybranych mięśni kompleksu lędźwiowo-miednicznego w różnych typach ustawienia miednicy wśród młodych kobiet. Polish J Sport Med. 2015;31(3):163-171. doi: 10.5604/1232406X.1179526.   Google Scholar

Lee D. Obręcz biodrowa. Badanie i leczenie okolicy lędźwiowo-miedniczno-biodrowej. Warszawa: DB Publishing; 2005.   Google Scholar

Kowalski IM, Protasiewicz-Fałdowska H, Dwornik M, Pierożyński B, Raistenskis J, Kiebzak W. Objective parallel-forms reliability assessment of 3 dimension real time body posture screening tests. BMC Pediatr. 2014;14:221. doi: 10.1186/1471-2431-14-221. DOI: https://doi.org/10.1186/1471-2431-14-221   Google Scholar

Takács M, Orlovits Z, Jáger B, Kiss RM. Comparison of spinal curvature parameters as determined by the ZEBRIS spine examination method and the Cobb method in children with scoliosis. PLoS One. 2018;13(7):e0200245. doi: 10.1371/journal.pone.0200245. DOI: https://doi.org/10.1371/journal.pone.0200245   Google Scholar

Godek P. Diagnostyka różnicowa odcinka lędźwiowego kręgosłupa i stawu krzyżowo-biodrowego – część 2. Praktyczna Fizjoterapia i Rehabilitacja. 2018;92(3).   Google Scholar

Kapandji AI. Anatomia funkcjonalna stawów. T. 3: Kręgosłup, miednica, głowa. Wrocław: Edra Urban & Partner; 2018.   Google Scholar

Lewit K. Terapia manualna w rehabilitacji chorób narządu ruchu. Kielce: ZL Natura; 2001.   Google Scholar

Rakowski A. Terapia manualna holistyczna. Poznań: Centrum Terapii Manualnej; 2017.   Google Scholar

Górniak K, Lichota M. Ukształtowanie przednio-tylnych krzywizn kręgosłupa studentów filii AWF w Białej Podlaskiej. Rocznik Lubuski. 2018;44(2a):129-139.   Google Scholar

Grabara M. Spinal curvatures of yoga practitioners compared to control participants: A cross-sectional study. Peer J. 2021;9:e12185. doi: 10.7717/peerj.12185. DOI: https://doi.org/10.7717/peerj.12185   Google Scholar

Król A, Polak M, Szczygieł E, Wójcik P, Gleb K. Relationship between mechanical factors and pelvic tilt in adults with and without low back pain. J Back Musculoskelet Rehabil. 2017;30(4):699-705. doi: 10.3233/BMR-140177. DOI: https://doi.org/10.3233/BMR-140177   Google Scholar

Hu P, Yu M, Sun Z, et al. Analysis of Global Sagittal Postural Patterns in Asymptomatic Chinese Adults. Asian Spine J. 2016;10(2):282-288. doi: 10.4184/asj.2016.10.2.282. DOI: https://doi.org/10.4184/asj.2016.10.2.282   Google Scholar

Demir M, Gumusburun E, Seringec N, Cicek M, Ertugrul R, Guneri B. Radiographic analysis of the lumbar and sacral region angles in young Turkish adults. J Pak Med Assoc. 2018;68(8):1212-1216.   Google Scholar

Yukawa Y, Kato F, Suda K, Yamagata M, Ueta T, Yoshida M. Normative data for parameters of sagittal spinal alignment in healthy subjects: an analysis of gender specific differences and changes with aging in 626 asymptomatic individuals. Eur Spine J. 2018;27(2):426-432. doi: 10.1007/s00586-016-4807-7. DOI: https://doi.org/10.1007/s00586-016-4807-7   Google Scholar

Pizones J, García-Rey E. Pelvic motion the key to understanding spine-hip interaction. EFORT Open Rev. 2020;5(9):522-533. doi: 10.1302/2058-5241.5.200032. DOI: https://doi.org/10.1302/2058-5241.5.200032   Google Scholar

Cho IY, Park SY, Park JH, Kim TK, Jung TW, Lee HM. The Effect of Standing and Different Sitting Positions on Lumbar Lordosis: Radiographic Study of 30 Healthy Volunteers. Asian Spine J. 2015;9(5):762-769. doi: 10.4184/asj.2015.9.5.762. DOI: https://doi.org/10.4184/asj.2015.9.5.762   Google Scholar

Chevillotte T, Couderrt P, Cawley D, et al. Influence of posture on relationships between pelvic parameters and lumbar lordosis: Comparison of the standing, seated, and supine positions. A preliminary study. Orthop Traumatol Surg Res. 2018;104(5)565-568. doi: 10.1016/j.otsr.2018.06.005. DOI: https://doi.org/10.1016/j.otsr.2018.06.005   Google Scholar

Li Y, Sun J, Wang G. Lumbar lordosis morphology correlates to pelvic incidence and erector spinae muscularity.Sci Rep. 2021;11(1):802. doi: 10.1038/s41598-020-80852-7. DOI: https://doi.org/10.1038/s41598-020-80852-7   Google Scholar

Husson JL, Mallet JF, Parent H, et al. The lumbar-pelvic-femoral complex: Applications in spinal imbalance. Orthop Traumatol Surg Res. 2010;96(4):S1-S9. doi: 10.1016/j.otsr.2010.03.006. DOI: https://doi.org/10.1016/j.otsr.2010.03.006   Google Scholar

Stolarczyk A, Stępiński P, Maciąg B, et al. Relacje miednica–kręgosłup w kontekście pierwotnej endoprotezoplastyki stawu biodrowego – praktyczne aspekty. Praktyczna Ortopedia i Traumatologia. 2021;23.   Google Scholar

Legaye J. Analysis of the Dynamic Sagittal Balance of the Lumbo-Pelvi-Femoral Complex. In: Klika V, ed. Biomechanics in Applications. London: IntechOpen; 2011. doi: 10.5772/19608. DOI: https://doi.org/10.5772/19608   Google Scholar

Boulay C, Tardieu C, Hecquet J, et al. Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J. 2006;15(4):415-422. doi: 10.1007/s00586-005-0984-5. DOI: https://doi.org/10.1007/s00586-005-0984-5   Google Scholar

Earls J. Urodzony, aby chodzić. Ciało w ruchu a efektywność mięśniowo-powięziowa. Poznań: Wydawnictwo Wyższej Szkoły Edukacji i Terapii; 2017.   Google Scholar

Esola MA, McClure PW, Fitzgerald GK, Siegler S. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine (Phila Pa 1976). 1996;21(1):71-78. doi: 10.1097/00007632-199601010-00017. DOI: https://doi.org/10.1097/00007632-199601010-00017   Google Scholar

Kim H-J, Chung S, Kim S, et al. Influences of trunk muscles on lumbar lordosis and sacral angle. Eur Spine J. 2006;15(4):409–414. doi: 10.1007/s00586-005-0976-5. DOI: https://doi.org/10.1007/s00586-005-0976-5   Google Scholar

Olson KA. Terapia manualna kręgosłupa. Wrocław: Edra Urban & Partner; 2016.   Google Scholar

Turoń-Skrzypińska A, Tomska N, Ptak M, et al. Impact of sitting position on the formation of spinal curvatures in the sagittal plane of taxi drivers-preliminary report. J Educ Health Sport. 2018;8(4):326-337. https://apcz.umk.pl/JEHS/article/view/5437.   Google Scholar

Briggs AM, van Dieën JH, Wrigley TV, et al. Thoracic kyphosis affects spinal loads and trunk muscle force. Phys Ther. 2007;87(5):595-607. doi: 10.2522/ptj.20060119. DOI: https://doi.org/10.2522/ptj.20060119   Google Scholar

Downloads

Published

2022-10-07

How to Cite

Wódka, K., Michalczyk, A., & Jankowicz-Szymańska, A. (2022). Relationships between sacral, lumbar and thoracic spine position and trunk mobility in the sagittal plane in young adults. Health Promotion & Physical Activity, 20(3), 1–10. https://doi.org/10.55225/hppa.445

Issue

Section

Original article

Most read articles by the same author(s)

1 2 3 > >>