Decomposition rate of two tea types in two different forestry niches

Authors

  • Patrycja Żelazo University of Applied Sciences in Tarnow, Poland
  • Janusz Fyda Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, University of Applied Sciences in Tarnow, Faculty of Mathematics and Natural Sciences,Poland https://orcid.org/0000-0003-1454-0991

DOI:

https://doi.org/10.55225/sti.399

Keywords:

soil, rate of decomposition, tea bags index, TBI

Abstract

Organic matter decomposition is one of the most important processes associated with flow of energy and recirculation of organic matter in natural environments. Using commercially sold tea bags of Lipton Sencha green tea (SGT) and Lipton Ceylon black tea (CBT) their decomposition was studied in mixed and coniferous forest. At both stations 25 bags of each tea were buried for a period of 3 months. After elapsed time, the bags were dug up, dried, and the mean weight loss of organic material for each tea type and ecosystem was calculated. In the mixed forest the average weight loss of tea bags was 46.8% for Sencha and 32.1% for Ceylon tea and respectively 44.6% and 30.6%, in the coniferous forest. Statistical analysis test (ANOVA) revealed a statistically significant difference (p < 0.05) in rate of decomposition between tea types, however the differences between the decomposition of the same type of tea on both type of forest were insignificant.

Downloads

Download data is not yet available.

Abramczyk K, Gałązka A. Różnorodność mikroorganizmów glebowych obszarów chronionych i o znaczących walorach przyrodniczych. Sylwan. 2017;161(6): 497–499.   Google Scholar

Mocek A, Owczarzak W. Gleba jako naturalne środowisko przyrodnicze. Nauka Przyroda Technologia. 2010;4(6):1–8.   Google Scholar

Brożek S. Gleby i siedliska leśne nizin i wyżyn Polski – ujęcie klasyczne i numeryczne. Roczniki Gleboznawcze. 2011;62(4):7–15.   Google Scholar

Tomaszewski J. O procesach glebotwórczych. Roczniki Gleboznawcze. 1959;8(2)17–38.   Google Scholar

Niewinna M. Wielkość opadu i tempo rozkładu ściółki w wybranych drzewostanach Bieszczadów. Roczniki Bieszczadzkie. 2010;18:59–73.   Google Scholar

Bujoczek L. Dekompozycja obumarłych drzew w ekosystemach leśnych ze szczególnym uwzględnieniem świerka, buka i jodły. Sylwan. 2012;156(3):208–217.   Google Scholar

Horodecki P, Jagodziński A. Ściółka leśna – życiodajny składnik lasów. Academia – Magazyn Polskiej Akademii Nauk. 2019;3–4(59–60):54–57.   Google Scholar

Kowałko D, Halarewicz A, Kaszubkiewicz J, Jezierski P. Tempo dekompozycji opadu organicznego podczas przemian siedlisk łęgowych. Sylwan. 2017;161(7):565–572. https://doi.org/10.26202/sylwan.2016098.   Google Scholar

Weiner J. Życie i ewolucja biosfery. Warszawa: PWN; 2005.   Google Scholar

Didion M, Repo A, Liski J, Forsius M. Towards harmonizing leaf litter decomposition studies using standard tea bags a field study and model application. Forests. 2016;7(8):1–12. https://doi.org/10.3390/f7080167. DOI: https://doi.org/10.3390/f7080167   Google Scholar

Saint-Laurent D, Arsenault-Boucher L. Soil properties and rate of organic matter decomposition in riparian woodlands using the TBI protocol. Geoderma. 2019;358. https://doi.org/10.1016/j.geoderma.2019.113976. DOI: https://doi.org/10.1016/j.geoderma.2019.113976   Google Scholar

BULiGL O/Kraków. Elaborat Glebowo – Siedliskowy dla Nadleśnictwa Dąbrowa Tarnowska. Kraków; 2005.   Google Scholar

BULiGL O/Kraków. Plan urządzenia lasu Nadleśnictwo Dąbrowa Tarnowska na okres gospodarczy od 1 stycznia 2016 r. do 31 grudnia 2025 r. Kraków; 2015.   Google Scholar

Houben D, Faucon M-P, Mercadal A-M. Response of organic matter decomposition o no-tillage adoption evaluated by the teabag technique. Soil Systems. 2018;2(42):1–9. https://doi.org/10.3390/soilsystems2030042. DOI: https://doi.org/10.3390/soilsystems2030042   Google Scholar

Keuskamp JA, Dingemansl BJJ, Lehtinen T, Sarneel JM, Hefting MM. Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution. 2013;4:1070–1075. https://doi.org/10.1111/2041-210X.12097. DOI: https://doi.org/10.1111/2041-210X.12097   Google Scholar

Olson JS. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 2008;44:322–331. https://doi.org/10.2307/1932179. DOI: https://doi.org/10.2307/1932179   Google Scholar

Berg B. Decomposition patterns for foliar litter: A theory for influencing factors. Soil Biology Biochemistry. 2014;78:222–232. https://doi.org/10.1016/j.soilbio.2014.08.005. DOI: https://doi.org/10.1016/j.soilbio.2014.08.005   Google Scholar

Coûteaux MM, Bottner P, Berg B. Litter decomposition, climate and litter quality. Trends in Ecology & Evolution. 1995;10(2):63–66. https://doi.org/10.1016/S0169-5347(00)88978-8. DOI: https://doi.org/10.1016/S0169-5347(00)88978-8   Google Scholar

Hararuk O, Luo Y. Improvement of global litter turnover rate predictions using a Bayesian MCMC approach. Ecosphere. 2014;5(12):1–13. https://doi.org/10.1890/ES14-00092.1. DOI: https://doi.org/10.1890/ES14-00092.1   Google Scholar

Miatto RC, Batalha MA. Leaf chemistry of woody species in the Brazilian cerrado and seasonal forest: Response to soil and taxonomy and effects on decomposition rates. Plant Ecology. 2016;217:1467–1479. https://doi.org/10.1007/s11258-016-0658-x. DOI: https://doi.org/10.1007/s11258-016-0658-x   Google Scholar

Bell MC, Ritson JP, Verhoef A, Brazier RE, Templeton MR, Graham NJD, Freeman C, Clark JM. Sensitivity of peatland litter decomposition to changes in temperature and rainfall. Geoderma. 2018;331:29–37. https://doi.org/10.1016/j.geoderma.2018.06.002. DOI: https://doi.org/10.1016/j.geoderma.2018.06.002   Google Scholar

Tóth Z, Hornung E, Báldi A. Effects of set-aside management on certain elements of soil biota and early stage organic matter decomposition in a High Nature Value Area, Hungary. Nature Conservation. 2018;29:1–26. https:doi.org/10.3897/natureconservation.29.24856. DOI: https://doi.org/10.3897/natureconservation.29.24856   Google Scholar

Laskowski R, Niklińska M, Maryański M. The dynamics of chemical elements in forest litter. Ecology. 1995;76(5):1393–1406. https://doi.org/10.2307/1938143. DOI: https://doi.org/10.2307/1938143   Google Scholar

Berg B, Laskowski R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover. Advances in Ecological Research. Amsterdam–London: Elsevier; 2006:421.   Google Scholar

Vesterdal L, Elberling B, Christiansen JR, Callesen I, Schmidt IK. Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management. 2012;264:185–196. https://doi.org/10.1016/j.foreco.2011.10.009. DOI: https://doi.org/10.1016/j.foreco.2011.10.009   Google Scholar

Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology. 2006;87(9):2288–2297. DOI: https://doi.org/10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2   Google Scholar

Commercially available CBT and SGT used in the experiment

Downloads

Published

2023-03-31

How to Cite

Żelazo, P., & Fyda, J. (2023). Decomposition rate of two tea types in two different forestry niches. Science, Technology and Innovation, 15(1-2), 8–16. https://doi.org/10.55225/sti.399

Issue

Section

Original articles