Decomposition rate of two tea types in two different forestry niches
DOI:
https://doi.org/10.55225/sti.399Keywords:
soil, rate of decomposition, tea bags index, TBIAbstract
Organic matter decomposition is one of the most important processes associated with flow of energy and recirculation of organic matter in natural environments. Using commercially sold tea bags of Lipton Sencha green tea (SGT) and Lipton Ceylon black tea (CBT) their decomposition was studied in mixed and coniferous forest. At both stations 25 bags of each tea were buried for a period of 3 months. After elapsed time, the bags were dug up, dried, and the mean weight loss of organic material for each tea type and ecosystem was calculated. In the mixed forest the average weight loss of tea bags was 46.8% for Sencha and 32.1% for Ceylon tea and respectively 44.6% and 30.6%, in the coniferous forest. Statistical analysis test (ANOVA) revealed a statistically significant difference (p < 0.05) in rate of decomposition between tea types, however the differences between the decomposition of the same type of tea on both type of forest were insignificant.
Downloads
References
Abramczyk K, Gałązka A. Różnorodność mikroorganizmów glebowych obszarów chronionych i o znaczących walorach przyrodniczych. Sylwan. 2017;161(6): 497–499. Google Scholar
Mocek A, Owczarzak W. Gleba jako naturalne środowisko przyrodnicze. Nauka Przyroda Technologia. 2010;4(6):1–8. Google Scholar
Brożek S. Gleby i siedliska leśne nizin i wyżyn Polski – ujęcie klasyczne i numeryczne. Roczniki Gleboznawcze. 2011;62(4):7–15. Google Scholar
Tomaszewski J. O procesach glebotwórczych. Roczniki Gleboznawcze. 1959;8(2)17–38. Google Scholar
Niewinna M. Wielkość opadu i tempo rozkładu ściółki w wybranych drzewostanach Bieszczadów. Roczniki Bieszczadzkie. 2010;18:59–73. Google Scholar
Bujoczek L. Dekompozycja obumarłych drzew w ekosystemach leśnych ze szczególnym uwzględnieniem świerka, buka i jodły. Sylwan. 2012;156(3):208–217. Google Scholar
Horodecki P, Jagodziński A. Ściółka leśna – życiodajny składnik lasów. Academia – Magazyn Polskiej Akademii Nauk. 2019;3–4(59–60):54–57. Google Scholar
Kowałko D, Halarewicz A, Kaszubkiewicz J, Jezierski P. Tempo dekompozycji opadu organicznego podczas przemian siedlisk łęgowych. Sylwan. 2017;161(7):565–572. https://doi.org/10.26202/sylwan.2016098. Google Scholar
Weiner J. Życie i ewolucja biosfery. Warszawa: PWN; 2005. Google Scholar
Didion M, Repo A, Liski J, Forsius M. Towards harmonizing leaf litter decomposition studies using standard tea bags a field study and model application. Forests. 2016;7(8):1–12. https://doi.org/10.3390/f7080167. DOI: https://doi.org/10.3390/f7080167 Google Scholar
Saint-Laurent D, Arsenault-Boucher L. Soil properties and rate of organic matter decomposition in riparian woodlands using the TBI protocol. Geoderma. 2019;358. https://doi.org/10.1016/j.geoderma.2019.113976. DOI: https://doi.org/10.1016/j.geoderma.2019.113976 Google Scholar
BULiGL O/Kraków. Elaborat Glebowo – Siedliskowy dla Nadleśnictwa Dąbrowa Tarnowska. Kraków; 2005. Google Scholar
BULiGL O/Kraków. Plan urządzenia lasu Nadleśnictwo Dąbrowa Tarnowska na okres gospodarczy od 1 stycznia 2016 r. do 31 grudnia 2025 r. Kraków; 2015. Google Scholar
Houben D, Faucon M-P, Mercadal A-M. Response of organic matter decomposition o no-tillage adoption evaluated by the teabag technique. Soil Systems. 2018;2(42):1–9. https://doi.org/10.3390/soilsystems2030042. DOI: https://doi.org/10.3390/soilsystems2030042 Google Scholar
Keuskamp JA, Dingemansl BJJ, Lehtinen T, Sarneel JM, Hefting MM. Tea Bag Index: A novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution. 2013;4:1070–1075. https://doi.org/10.1111/2041-210X.12097. DOI: https://doi.org/10.1111/2041-210X.12097 Google Scholar
Olson JS. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 2008;44:322–331. https://doi.org/10.2307/1932179. DOI: https://doi.org/10.2307/1932179 Google Scholar
Berg B. Decomposition patterns for foliar litter: A theory for influencing factors. Soil Biology Biochemistry. 2014;78:222–232. https://doi.org/10.1016/j.soilbio.2014.08.005. DOI: https://doi.org/10.1016/j.soilbio.2014.08.005 Google Scholar
Coûteaux MM, Bottner P, Berg B. Litter decomposition, climate and litter quality. Trends in Ecology & Evolution. 1995;10(2):63–66. https://doi.org/10.1016/S0169-5347(00)88978-8. DOI: https://doi.org/10.1016/S0169-5347(00)88978-8 Google Scholar
Hararuk O, Luo Y. Improvement of global litter turnover rate predictions using a Bayesian MCMC approach. Ecosphere. 2014;5(12):1–13. https://doi.org/10.1890/ES14-00092.1. DOI: https://doi.org/10.1890/ES14-00092.1 Google Scholar
Miatto RC, Batalha MA. Leaf chemistry of woody species in the Brazilian cerrado and seasonal forest: Response to soil and taxonomy and effects on decomposition rates. Plant Ecology. 2016;217:1467–1479. https://doi.org/10.1007/s11258-016-0658-x. DOI: https://doi.org/10.1007/s11258-016-0658-x Google Scholar
Bell MC, Ritson JP, Verhoef A, Brazier RE, Templeton MR, Graham NJD, Freeman C, Clark JM. Sensitivity of peatland litter decomposition to changes in temperature and rainfall. Geoderma. 2018;331:29–37. https://doi.org/10.1016/j.geoderma.2018.06.002. DOI: https://doi.org/10.1016/j.geoderma.2018.06.002 Google Scholar
Tóth Z, Hornung E, Báldi A. Effects of set-aside management on certain elements of soil biota and early stage organic matter decomposition in a High Nature Value Area, Hungary. Nature Conservation. 2018;29:1–26. https:doi.org/10.3897/natureconservation.29.24856. DOI: https://doi.org/10.3897/natureconservation.29.24856 Google Scholar
Laskowski R, Niklińska M, Maryański M. The dynamics of chemical elements in forest litter. Ecology. 1995;76(5):1393–1406. https://doi.org/10.2307/1938143. DOI: https://doi.org/10.2307/1938143 Google Scholar
Berg B, Laskowski R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover. Advances in Ecological Research. Amsterdam–London: Elsevier; 2006:421. Google Scholar
Vesterdal L, Elberling B, Christiansen JR, Callesen I, Schmidt IK. Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management. 2012;264:185–196. https://doi.org/10.1016/j.foreco.2011.10.009. DOI: https://doi.org/10.1016/j.foreco.2011.10.009 Google Scholar
Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology. 2006;87(9):2288–2297. DOI: https://doi.org/10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2 Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Janusz Fyda, Patrycja Żelazo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.