Utilization of specific primers in legume allergens based polymorphism screening

Autor

  • Lucia Klongová Centrum Badawcze AgroBioTech, Słowacki Uniwersytet Rolniczy w Nitrze, Słowacja
  • Adam Kováčik Instytut Nauk o Roślinach i Środowisku, Wydział Agrobiologii i Zasobów Żywności, Słowacki Uniwersytet Rolniczy w Nitrze, Słowacja
  • Lucia Urbanová Centrum Badawcze AgroBioTech, Słowacki Uniwersytet Rolniczy w Nitrze, Słowacja https://orcid.org/0000-0001-7434-2677
  • Matúš Kyseľ Centrum Badawcze AgroBioTech, Słowacki Uniwersytet Rolniczy w Nitrze, Słowacja https://orcid.org/0000-0002-1679-391X
  • Eva Ivanišová Instytut Nauk o Żywności, Wydział Biotechnologii i Nauk o Żywności, Słowacki Uniwersytet Rolniczy w Nitrze, Słowacja https://orcid.org/0000-0001-5193-2957
  • Jana Žiarovská Instytut Nauk o Roślinach i Środowisku, Wydział Agrobiologii i Zasobów Żywności, Słowacki Uniwersytet Rolniczy w Nitrze, Słowacja https://orcid.org/0000-0002-0005-9729

DOI:

https://doi.org/10.5604/01.3001.0015.5431

Słowa kluczowe:

legumes, profilins, vicilins, specific primers, polymorphism

Abstrakt

Different types of allergies became a part of life of many people around the world. The research activities connecting to allergens are actually not oriented only for protein and immunological interactions, but to the genomic and transcriptomic background of them, too. Analysis and description of genomic variability of allergens in plant food resources will help to manage the allergen based strategies in the future. Here, the bioinformatic approach was used to develop and validate the specific primers for genomic screening of polymorphism of profilins (Profilin Based Amplicon Polymorphism; PBAP) and vicilins (Vicilin Based Amplicon Polymorphism; VBAP) among the legumes. The alignment of existing public databases data for these allergens in the group of legumes was performed. Subsequently, specific primers were designed and their ability to generate polymorphic amplicons were tested for three legumes – bean, lentil and chickpeas. In all cases, amplicons were generated and polymorphism was detected in all three species for profilin as well as for vicilin.

Statystyka pobrań

Statystyki pobrań nie są jeszcze dostępne

Sampson HA. Clinical practice. Peanut allergy. New England Journal of Medicine 2002;346(17):1294–1299. doi: https://doi.org/10.1056/NEJMcp012667.   Google Scholar

Young E, Stoneham MD, Petruckevitch A, Barton J, Rona R. A population study of food intolerance. Lancet. 1994;343(8906):1127–1129. doi: https://doi.org/10.1016/s0140-6736(94)90234-8.   Google Scholar

Jansen JJ, Kardinaal AF, Huijbers G, Vlieg-Boerstra BJ, Martens BP, Ockhuizen T. Prevalence of food allergy and intolerance in the adult Dutch population. Journal of Allergy and Clinical Immunology. 1994;93(2):446–456. doi: https://doi.org/10.1016/0091-6749(94)90353-0.   Google Scholar

Verma AK, Kumar S, Das M, Dwivedi PD. A comprehensive review of legume allergy. Clinical Reviews in Allergy and Immunology. 2013;45(1):30–46. doi: https://doi.org/10.1007/s12016-012-8310-6.   Google Scholar

Vance CP, Graham PH, Allan DL. Biological nitrogen fixation. Phosphorus: A critical future need. In: Pedrosa FO, Hungria M, Yates MG, Newton WE, editors. Nitrogen Fixation: From Molecules to Crop Productivity. Dordrecht: Kluwer Academic Publishers; 2000. p. 506–514.   Google Scholar

Duranti M, Gius C. Legume seeds: protein content and nutritional value. Field Crops Research. 1997;53:31–45. doi: https://doi.org/10.1016/S0378-4290(97)00021-X.   Google Scholar

Werner D. Production and biological nitrogen fixation of tropical legumes. In: Werner D, Newton WE, editors. Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment. Dordrecht: Springer; 2005. p. 1–13. doi: https://doi.org/10.1007/1-4020-3544-6_1.   Google Scholar

Riascos JJ, Weissinger AK, Weissinger SM, Burks AW. Hypoallergenic legume crops and food allergy: Factors affecting feasibility and risk. Journal of Agricultural and Food Chemistry. 2010;58(1):20–27. doi: https://doi.org/10.1021/jf902526y.   Google Scholar

Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills EN. Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: an in silico analysis. Journal of Allergy and Clinical Immunology. 2005;115(1):163–170. doi: https://doi.org/10.1016/j.jaci.2004.10.026.   Google Scholar

Carlsson L, Nyström LE, Sundkvist I, Markey F, Lindberg U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. Journal of Molecular Biology. 1977;115(3):465–483. doi: https://doi.org/10.1016/0022-2836(77)90166-8.   Google Scholar

Cuesta-Herranz J, Pastor C, Figueredo E, Vidarte L, De las Heras M, Durán C, Fernández-Caldas E, de Miguel J, Vivanco F. Identification of Cucumisin (Cuc m 1), a subtilisin-like endopeptidase, as the major allergen of melon fruit. Clinical and Experimental Allergy. 2003;33(6):827–833. doi: https://doi.org/10.1046/j.1365-2222.2003.01680.x.   Google Scholar

Valster AH, Pierson ES, Valenta R, Hepler PK, Emons A. Probing the plant actin cytoskeleton during cytokinesis and interphase by profilin microinjection. Plant Cell. 1997;9(10):1815–1824. doi: https://doi.org/10.1105/tpc.9.10.1815.   Google Scholar

Valenta R, Duchêne M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O. Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science. 1991;253(5019):557–560. doi: https://doi.org/10.1126/science.1857985.   Google Scholar

Jimenez-Lopez JC, Morales S, Castro AJ, Volkmann D, Rodríguez-García MI, Alché JD. Characterization of profilin polymorphism in pollen with a focus on multifunctionality. PLoS One. 2012;7(2):e30878. doi: https://doi.org/10.1371/journal.pone.0030878.   Google Scholar

Shewry PR, Napier JA, Tatham AS. Seed storage proteins: structures and biosynthesis. Plant Cell. 1995;7(7):945–956. doi: https://doi.org/10.1105/tpc.7.7.945.   Google Scholar

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990;215(3):403–410. doi: https://doi.org/10.1016/S0022-2836(05)80360-2.   Google Scholar

Martínez San Ireneo M, Ibáñez MD, Fernández-Caldas E, Carnés J. In vitro and in vivo cross-reactivity studies of legume allergy in a Mediterranean population. International Archives of Allergy and Immunology. 2008;147(3):222–230. doi: https://doi.org/10.1159/000142045.   Google Scholar

Moneret-Vautrin DA, Guérin L, Kanny G, Flabbee J, Frémont S, Morisset M. Cross-allergenicity of peanut and lupine: The risk of lupine allergy in patients allergic to peanuts. Journal of Allergy and Clinical Immunology. 1999;104(4 Pt 1):883–888. doi: https://doi.org/10.1016/s0091-6749(99)70303-9.   Google Scholar

Hieta N, Hasan T, Mäkinen-Kiljunen S, Lammintausta K. Lupin allergy and lupin sensitization among patients with suspected food allergy. Annals of Allergy, Asthma and Immunology. 2009;103(3):233–237. doi: https://doi.org/10.1016/S1081-1206(10)60187-1.   Google Scholar

Liberman J, Sblett J, Ali Y, Haselkorn T, Damle V, Chidambaram A, Rosen K, Mahr T. Increased incidence and prevalence of peanut allergy in children and adolescents in the United States. Annals of Allergy, Asthma & Immunology. 2018;121(5):13. doi: https://doi.org/10.1016/j.anai.2018.09.039.   Google Scholar

Hourihane JO, Aiken R, Briggs R, Gudgeon LA, Grimshaw KE, DunnGalvin A, Roberts SR. The impact of government advice to pregnant mothers regarding peanut avoidance on the prevalence of peanut allergy in United Kingdom children at school entry. Journal of Allergy and Clinical Immunology. 2007;119(5):1197–1202. doi: https://doi.org/10.1016/j.jaci.2006.12.670.   Google Scholar

Taylor SL, Hefle SL, Bindslev-Jensen C, Bock SA, Burks AW Jr, Christie L, Hill DJ, Host A, Hourihane JO, Lack G, Metcalfe DD, Moneret-Vautrin DA, Vadas PA, Rance F, Skrypec DJ, Trautman TA, Yman IM, Zeiger RS. Factors affecting the determination of threshold doses for allergenic foods: How much is too much? Journal of Allergy and Clinical Immunology. 2002;109(1):24–30. doi: https://doi.org/10.1067/mai.2002.120564.   Google Scholar

Peeters KA, Koppelman SJ, Penninks AH, Lebens A, Bruijnzeel-Koomen CA, Hefle SL, Taylor SL, van Hoffen E, Knulst AC. Clinical relevance of sensitization to lupine in peanut-sensitized adults. Allergy. 2009;64(4):549–555. doi: https://doi.org/10.1111/j.1398-9995.2008.01818.x.   Google Scholar

Burks AW, Williams LW, Helm RM, Connaughton C, Cockrell G, O’Brien T. Identification of a major peanut allergen, Ara h I, in patients with atopic dermatitis and positive peanut challenges. Journal of Allergy and Clinical Immunology. 1991;88(2):172–9. doi: https://doi.org/10.1016/0091-6749(91)90325-i.   Google Scholar

Kleber-Janke T, Crameri R, Scheurer S, Vieths S, Becker WM. Patient-tailored cloning of allergens by phage display: peanut (Arachis hypogaea) profilin, a food allergen derived from a rare mRNA. Journal of Chromatography, B: Biomedical Sciences and Applications. 2001;756(1–2):295–305. doi: https://doi.org/10.1016/s0378-4347(01)00088-3.   Google Scholar

Beyer K, Morrow E, Li XM, Bardina L, Bannon GA, Burks AW, Sampson HA. Effects of cooking methods on peanut allergenicity. Journal of Allergy and Clinical Immunology. 2001;107(6):1077–1081. doi: https://doi.org/10.1067/mai.2001.115480.   Google Scholar

Ogawa A, Samoto M, Takahashi K. Soybean allergens and hypoallergenic soybean products. Journal of Nutritional Science and Vitaminology (Tokyo). 2000;46(6):271–279. doi: https://doi.org/10.3177/jnsv.46.271.   Google Scholar

González R, Polo F, Zapatero L, Caravaca F, Carreira J. Purification and characterization of major inhalant allergens from soybean hulls. Clinical and Experimental Allergy. 1992;22(8):748–755. doi: https://doi.org/10.1111/j.1365-2222.1992.tb02814.x.   Google Scholar

Codina R, Lockey RF, Fernández-Caldas E, Rama R. Identification of the soybean hull allergens responsible for the Barcelona asthma outbreaks. International Archives of Allergy and Immunology. 1999;119(1):69–71. doi: https://doi.org/10.1159/000024178.   Google Scholar

Holzhauser T, Wackermann O, Ballmer-Weber BK, Bindslev-Jensen C, Scibilia J, Perono-Garoffo L, Utsumi S, Poulsen LK, Vieths S. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. Journal of Allergy and Clinical Immunology. 2009;123(2):452–458. doi: https://doi.org/10.1016/j.jaci.2008.09.034.   Google Scholar

Ogawa T, Bando N, Tsuji H, Nishikawa K, Kitamura K. Alpha-subunit of beta-conglycinin, an allergenic protein recognized by IgE antibodies of soybean-sensitive patients with atopic dermatitis. Bioscience, Biotechnology, and Biochemistry. 1995;59(5):831–833. doi: https://doi.org/10.1271/bbb.59.831.   Google Scholar

Mittag D, Vieths S, Vogel L, Wagner-Loew D, Starke A, Hunziker P, Becker WM, Ballmer-Weber BK. Birch pollen-related food allergy to legumes: identification and characterization of the Bet v 1 homologue in mungbean (Vigna radiata), Vig r 1. Clinical adn Experimental Allergy. 2005;35(8):1049–1055. doi: https://doi.org/10.1111/j.1365-2222.2005.02309.x.   Google Scholar

Sánchez-Monge R, Pascual CY, Díaz-Perales A, Fernández-Crespo J, Martín-Esteban M, Salcedo G. Isolation and characterization of relevant allergens from boiled lentils. Journal of Allergy and Clinical Immunology. 2000;106(5):955–961. doi: https://doi.org/10.1067/mai.2000.109912.   Google Scholar

Goggin DE, Mir G, Smith WB, Stuckey M, Smith PM. Proteomic analysis of lupin seed proteins to identify conglutin Beta as an allergen, Lup an 1. Journal of Agricultural and Food Chemistry. 2008;56(15):6370–6377. doi: https://doi.org/10.1021/jf800840u.   Google Scholar

Peeters KA, Nordlee JA, Penninks AH, Chen L, Goodman RE, Bruijnzeel-Koomen CA, Hefle SL, Taylor SL, Knulst AC. Lupine allergy: not simply cross-reactivity with peanut or soy. Journal of Allergy and Clinical Immunology. 2007;120(3):647–53. doi: https://doi.org/10.1016/j.jaci.2007.05.032.   Google Scholar

Magni C, Herndl A, Sironi E, Scarafoni A, Ballabio C, Restani P, Bernardini R, Novembre E, Vierucci A, Duranti M. One- and two-dimensional electrophoretic identification of IgE-binding polypeptides of Lupinus albus and other legume seeds. Journal of Agricultural and Food Chemistry. 2005;53(11):4567–4571. doi: https://doi.org/10.1021/jf0500785.   Google Scholar

Sanchez-Monge R, Lopez-Torrejón G, Pascual CY, Varela J, Martin-Esteban M, Salcedo G. Vicilin and convicilin are potential major allergens from pea. Clinical and Experimental Allergy. 2004;34(11):1747–1753. doi: https://doi.org/10.1111/j.1365-2222.2004.02085.x.   Google Scholar

van Ree R, Voitenko V, van Leeuwen WA, Aalberse RC. Profilin is a cross-reactive allergen in pollen and vegetable foods. International Archives of Allergy and Immunology. 1992;98(2):97–104. doi: https://doi.org/10.1159/000236171.   Google Scholar

Compés E, Hernández E, Quirce S, Palomares O, Rodríguez R, Cuesta J, Sastre J, Villalba M. Hypersensitivity to black locust (Robinia pseudoacacia) pollen: “Allergy mirages”. Annals of Allergy Asthma and Immunology. 2006;96(4):586–92. doi: https://doi.org/10.1016/S1081-1206(10)63554-5.   Google Scholar

Bar-El Dadon S, Pascual CY, Eshel D, Teper-Bamnolker P, Ibáñez MD, Reifen R. Vicilin and the basic subunit of legumin are putative chickpea allergens. Food Chemistry. 2013;138(1):13–8. doi: https://doi.org/10.1016/j.foodchem.2012.10.031.   Google Scholar

Rougé P, Culerrier R, Thibau F, Didier A, Barre A. A case of severe anaphylaxis to kidney bean: phaseolin (vicilin) and PHA (lectin) identified as putative allergens. Allergy. 2011;66(2):301–302. doi: https://doi.org/10.1111/j.1398-9995.2010.02466.x.   Google Scholar

López-Torrejón G, Salcedo G, Martín-Esteban M, Díaz-Perales A, Pascual CY, Sánchez-Monge R. Len c 1, a major allergen and vicilin from lentil seeds: protein isolation and cDNA cloning. Journal of Allergy and Clinical Immunology. 2003;112(6):1208–1215. doi: https://doi.org/10.1016/j.jaci.2003.08.035.   Google Scholar

Martínez San Ireneo M, Ibáñez MD, Sánchez JJ, Carnés J, Fernández-Caldas E. Clinical features of legume allergy in children from a Mediterranean area. Annales of Allergy, Asthma and Immunology. 2008;101(2):179–184. doi: https://doi.org/10.1016/s1081-1206(10)60207-4.   Google Scholar

Martin JA, Compaired JA, de la Hoz B, Quirce S, Alonso MD, Igea JM, Losada E. Bronchial asthma induced by chick pea and lentil. Allergy. 1992;47(2 Pt 2):185–187. doi: https://doi.org/10.1111/j.1398-9995.1992.tb00962.x.   Google Scholar

Cuadrado C, Cabanillas B, Pedrosa MM, Varela A, Guillamón E, Muzquiz M, Crespo JF, Rodriguez J, Burbano C. Influence of thermal processing on IgE reactivity to lentil and chickpea proteins. Molecular Nutrition and Food Research. 2009;53(11):1462–1468. doi: https://doi.org/10.1002/mnfr.200800485.   Google Scholar

Shin DS, Compadre CM, Maleki SJ, Kopper RA, Sampson H, Huang SK, Burks AW, Bannon GA. Biochemical and structural analysis of the IgE binding sites on ara h1, an abundant and highly allergenic peanut protein. Journal of Biological Chemistry. 1998;273(22):13753–13759. doi: https://doi.org/10.1074/jbc.273.22.13753.   Google Scholar

Ogawa T, Bando N, Tsuji H, Nishikawa K, Kitamura K. Alpha-subunit of beta-conglycinin, an allergenic protein recognized by IgE antibodies of soybean-sensitive patients with atopic dermatitis. Bioscience, Biotechnology, and Biochemistry. 1995;59(5):831–833. doi: https://doi.org/10.1271/bbb.59.831.   Google Scholar

Barre A, Borges JP, Rougé P. Molecular modelling of the major peanut allergen Ara h 1 and other homotrimeric allergens of the cupin superfamily: A structural basis for their IgE-binding cross-reactivity. Biochimie. 2005;87(6):499–506. doi: https://doi.org/10.1016/j.biochi.2005.02.011.   Google Scholar

Smith WB, Gillis D, Kette FE. Lupin: A new hidden food allergen. Medical Journal of Australia. 2004;181(4):219–220. doi: https://doi.org/10.5694/j.1326-5377.2004.tb06242.x.   Google Scholar

Alvarez-Alvarez J, Guillamón E, Crespo JF, Cuadrado C, Burbano C, Rodríguez J, Fernández C, Muzquiz M. Effects of extrusion, boiling, autoclaving, and microwave heating on lupine allergenicity. Journal of Agricultural and Food Chemistry. 2005;53(4):1294–1298. doi: https://doi.org/10.1021/jf0490145.   Google Scholar

Croy RR, Gatehouse JA, Tyler M, Boulter D. The purification and characterization of a third storage protein (convicilin) from the seeds of pea (Pisum sativum L.). Biochemical Journal. 1980;191(2):509–516. doi: https://doi.org/10.1042/bj1910509.   Google Scholar

Jukanti AK, Gaur PM, Gowda CL, Chibbar RN. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. British Journal of Nutrition. 2012;108(Suppl 1):S11–26. doi: https://doi.org/10.1017/S0007114512000797.   Google Scholar

Nguyen TT, Taylor PWJ, Redden RJ, Ford R. Genetic diversity estimates in Cicer using AFLP analysis. Plant Breeding. 2008;123(2):173–179. doi: https://doi.org/10.1046/j.1439-0523.2003.00942.x.   Google Scholar

Hajibarat Z, Saidi A, Hajibarat Z, Talebi R. Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP). Physiology and molecular Biology of Plants. 2015;21(3):365–73. doi: https://doi.org/10.1007/s12298-015-0306-2.   Google Scholar

Alege GO, Abu Ngozi E, Sunday CE. Seed protein electrophoresis of some members of the family fabaceae. African Journal of Biotechnology. 2014;13(36):3730–3735. doi: https://doi.org/10.5897/AJB2014.13715.   Google Scholar

Jiang LF, Qi X, Zhang XQ, Huang LK, Ma X, Xie WG. Analysis of diversity and relationships among orchardgrass (Dactylis glomerata L.) accessions using start codon-targeted markers. Genetics and Molecular Research. 2014;13(2):4406–4418. doi: https://doi.org/10.4238/2014.June.11.4.   Google Scholar

Xiong F, Zhong R, Han Z, Jiang J, He L, Zhuang W, Tang R. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Molecular Biology Reports. 2011;38(5):3487–3494. doi: https://doi.org/10.1007/s11033-010-0459-6.   Google Scholar

Valizadeh M. Seed storage protein of grain legumes grown in Iran using SDS-PAGE. Journal of Agricultural Science and Technology. 2001;3(4):287–292.   Google Scholar

Mondal AK, Mondal S. Circumscription of the families within Leguminales as determined by cladistic analysis based on seed protein. African Journal of Biotechnology. 2011;10(15):2850–2856. doi: https://doi.org/10.5897/AJB10.206.   Google Scholar

Doyle JJ, Chappill JA, Bailey CD, Kajita T. Towards a comprehensive phylogeny of legumes: evidence from rbcL sequences and non-molecular data. In: Herendeen PS, Bruneau A, editors. Advances in Legume Systematics. Part 9. Royal Botanic Gardens, Kew; 2000. p. 1–20.   Google Scholar

Wojciechowski MF, Lavin M, Sanderson MJ. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. American Journal of Botany. 2004;91(11):1846–1862. doi: https://doi.org/10.3732/ajb.91.11.1846.   Google Scholar

Fragment analysis of amplicons generated by PBAP for lentil evaluated with software GelAnalyzer

Opublikowane

2021-11-22

Jak cytować

Klongová, L., Kováčik, A., Urbanová, L., Kyseľ, M., Ivanišová, E., & Žiarovská, J. (2021). Utilization of specific primers in legume allergens based polymorphism screening. Science, Technology and Innovation, 13(2), 12–21. https://doi.org/10.5604/01.3001.0015.5431

Numer

Dział

Artykuły oryginalne

Inne teksty tego samego autora