Application of RRAP reliability optimization as a test of nature-inspired algorithms

Autor

DOI:

https://doi.org/10.55225/sti.528

Słowa kluczowe:

reliability optimization, RRAP, Firefly Algorithm (FA), Cuckoo Search (CS), ANOVA, Lévy flight

Abstrakt

This paper presents a discussion on the application of two swarm intelligence algorithms, Cuckoo Search (CS) and Firey Algorithm (FA), to maximize the reliability of two complex systems with resource constraints, which have been well-known in the literature. The reliability of the systems is also evaluated using several classical methods. The results indicate that although the CS algorithm, which utilizes Lévy flight, is eective, the FA rey algorithm outperformed it in the presented optimization tasks, within the given parameter range. These ndings contribute to the ongoing discussion on using nature-inspired algorithms for solving Reliability Redundancy Allocation Problem (RRAP) problems, and the two test scenarios used in the study can be useful for validating other algorithms in RRAP problems. The paper introduces metrics and methods for analyzing and comparing the performance of algorithms in RRAP optimization, including the comparison of criterion function values and other parameters introduced in the paper. Additionally, the paper discusses statistical analyses of variance (ANOVA) with post-hoc RIR Tuckey tests.

Statystyka pobrań

Statystyki pobrań nie są jeszcze dostępne

Sobczak W. Podstawy probabilistyczne teorii systemów informacyjnych. Warszawa: Wydawnictwa Naukowo-Techniczne; 1981.   Google Scholar

Yang X-S. Multiobjective firefly algorithm for continuous optimization. Engineering with Computers. 2013;29:175–184. https://doi.org/10.1007/s00366-012-0254-1. DOI: https://doi.org/10.1007/s00366-012-0254-1   Google Scholar

Klempka R, Filipowicz B. Comparison of using the genetic algorithm and cuckoo search for multicriteria optimisation with limitation. Turkish Journal of Electrical Engineering and Computer Sciences. 2017;25:1300–1310. https://doi.org/10.3906/elk-1511-252. DOI: https://doi.org/10.3906/elk-1511-252   Google Scholar

Kwiecień J. Algorytmy stadne w rozwiązywaniu wybranych zagadnień optymalizacji dyskretnej i kombinatorycznej. Kraków: Wydawnictwa AGH; 2015.   Google Scholar

Kwiecień J, Filipowicz B. Optymalizacja niezawodności złożonych systemów za pomocą algorytmu świetlika. Eksploatacja i Niezawodność. 2017;19(2):296–301. https://doi.org/10.17531/ein.2017.2.18. DOI: https://doi.org/10.17531/ein.2017.2.18   Google Scholar

Yang X-S. Nature-Inspired Optimization Algorithms. Cham: Elsevier; 2014. https://doi.org/10.1016/C2013-0-01368-0. DOI: https://doi.org/10.1016/C2013-0-01368-0   Google Scholar

Fuksa AK. Zastosowanie sztucznej inteligencji w optymalizacji niezawodnościowej systemów. [doctoral dissertation]. Kraków: Akademia Górniczo-Hutnicza im. H. Kołłątaja; 2017.   Google Scholar

Kuo S-Y, Lu S-K, Yeh F-M. Determining terminal-pair reliability based on edge expansion diagrams using OBDD. IEEE Transactions on Reliability. 1999;48(3):234–246. https://doi.org/10.1109/24.799845. DOI: https://doi.org/10.1109/24.799845   Google Scholar

Yeh F-M, Lu S-K, Kuo S-Y. OBDD-based evaluation of k-terminal network reliability. IEEE Transactions on Reliability. 2002;51(4):443–451. https://doi.org/10.1109/TR.2002.804736. DOI: https://doi.org/10.1109/TR.2002.804736   Google Scholar

Kim H-G, Bae C-O, Park D-J. Reliability–redundancy optimization using simulated annealing algorithms. Journal of Quality in Maintenance Engineering. 2006;12(4): 354–363. https://doi.org/10.1108/13552510610705928. DOI: https://doi.org/10.1108/13552510610705928   Google Scholar

dos Santos Coelho L. An effcient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications. Reliability Engineering and System Safety. 2009;94(4):830–837. https://doi.org/10.1016/j.ress.2008.09.001. DOI: https://doi.org/10.1016/j.ress.2008.09.001   Google Scholar

Liu Y, Qin G. A modified particle swarm optimization algorithm for reliability redundancy optimization problem. Journal of Computers. 2014;9(9):2124–2131. DOI: https://doi.org/10.4304/jcp.9.9.2124-2131   Google Scholar

Yeh W-C, Hsieh T-J. Solving reliability redundancy allocation problems using an articial bee colony algorithm. Computers and Operations Research. 2011;38(11):1465–1473. https://doi.org/10.1016/j.cor.2010.10.028. DOI: https://doi.org/10.1016/j.cor.2010.10.028   Google Scholar

Kanagaraj G, Ponnambalam SG, Jawahar N. A hybrid cuckoo search and genetic algorithm for reliability–redundancy allocation problems. Computers and Industrial Engineering. 2013,66(4):1115–1124. https://doi.org/10.1016/j.cie.2013.08.003. DOI: https://doi.org/10.1016/j.cie.2013.08.003   Google Scholar

Liu Y. Improved bat algorithm for reliability–redundancy allocation problems. International Journal of Security and Its Applications. 2016;10(2):1–12. http://dx.doi.org/10.14257/ijsia.2016.10.2.01. DOI: https://doi.org/10.14257/ijsia.2016.10.2.01   Google Scholar

Agarwa M, Sharm VK. Ant colony approach to constrained redundancy optimization in binary systems. Applied Mathematical Modelling. 2010;34(4):992–1003. https://doi.org/10.1016/j.apm.2009.07.016. DOI: https://doi.org/10.1016/j.apm.2009.07.016   Google Scholar

Mellal MA, Zio E. System reliability–redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm. Reliability Engineering and System Safety. 2020;201:106973. https://doi.org/10.1016/j.ress.2020.106973. DOI: https://doi.org/10.1016/j.ress.2020.106973   Google Scholar

Rakhi K, Pahuja GL. Solving reliability redundancy allocation problem using grey wolf optimization algorithm. Journal of Physics: Conference Series. 2020;1706:012155. https://doi.org/10.1088/1742-6596/1706/1/012155. DOI: https://doi.org/10.1088/1742-6596/1706/1/012155   Google Scholar

Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software. 2014;69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007. DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007   Google Scholar

Ardakan M, Rezvan M. Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II. Reliability Engineering and System Safety. 2018;172:225–238. https://doi.org/10.1016/j.ress.2017.12.019. DOI: https://doi.org/10.1016/j.ress.2017.12.019   Google Scholar

Chen T. IAs based approach for reliability redundancy allocation problems. Applied Mathematics and Computation. 2006;182(2):1556–1567. https://doi.org/10.1016/j.amc.2006.05.044. DOI: https://doi.org/10.1016/j.amc.2006.05.044   Google Scholar

Harish G. An approach for solving constrained reliability–redundancy allocation problems using cuckoo search algorithm, Beni-Suef University Journal of Basic and Applied Sciences. 2015;4(1):14–25. https://doi.org/10.1016/j.bjbas.2015.02.003. DOI: https://doi.org/10.1016/j.bjbas.2015.02.003   Google Scholar

Hikita M, Nakagawa Y, Nakashima K, Narihisa H. Reliability optimization of system by a surrogate-constraints algorithm. IEEE Transactions on Reliability. 1992;41(3): 473–480. https://doi.org/10.1109/24.159825. DOI: https://doi.org/10.1109/24.159825   Google Scholar

Hsieh Y-C, Chen T-C, Bricker DL. Genetic algorithms for reliability design problems. Microelectronics Reliability. 1998;38(10):1599–1605. https://doi.org/10.1016/S0026-2714(98)00028-6. DOI: https://doi.org/10.1016/S0026-2714(98)00028-6   Google Scholar

Liu Z, Chen J-H, Tan S-Y, Yeh W-C. A novel simplied swarm optimization for generalized reliability redundancy allocation problem. arXiv:2110.00133; 2021. https://doi.org/10.48550/arXiv.2110.00133.   Google Scholar

Saleem E, Dao T-M, Liu Z. Multiple-objective optimization and design of series-parallel systems using novel hybrid genetic algorithm meta-heuristic approach. World Journal of Engineering and Technology. 2018;6:532–555. https://doi.org/10.4236/wjet.2018.63032. DOI: https://doi.org/10.4236/wjet.2018.63032   Google Scholar

Wu P, Gao L, Zou D, Li S. An improved particle swarm optimization algorithm for reliability problems. ISA Transactions. 2011;50(1):71–81. https://doi.org/10.1016/j.isatra.2010.08.005. DOI: https://doi.org/10.1016/j.isatra.2010.08.005   Google Scholar

Marouani H, Al-mutiri O. Optimization of reliability redundancy allocation problems: A review of the evolutionary algorithms. Computers, Materials and Continua. 2022;71(1):537–571. https://doi.org/10.32604/cmc.2022.020098. DOI: https://doi.org/10.32604/cmc.2022.020098   Google Scholar

Valian E. Solving reliability optimization problems. In: Yang X-S, editor. Cuckoo Search and Firey Algorithm Theory and Applications. London: Springer; 2014, p. 195–216. DOI: https://doi.org/10.1007/978-3-319-02141-6_10   Google Scholar

Ghasemi M, Rahimnejad A, Hemmati R, Akbari E, Gadsden SA. Wild Geese Algorithm: A novel algorithm for large scale optimization based on the natural life and death of wild geese. Array. 2021;11:100074. https://doi.org/10.1016/j.array.2021.100074. DOI: https://doi.org/10.1016/j.array.2021.100074   Google Scholar

Devarapalli R, Kumar V. Power system oscillation damping controller design: A novel approach of integrated HHO-PSO algorithm. Archives of Control Sciences. 2021;31(67):553–591. https://doi.org/10.24425/acs.2021.138692. DOI: https://doi.org/10.24425/acs.2021.138692   Google Scholar

Pijarski P. Optymalizacja heurystyczna w ocenie warunków pracy i planowania rozwoju systemu elektroenergetycznego. Lublin: Politechnika Lubelska; 2019.   Google Scholar

Kusiak J, Danielewska-Tułecka A, Oprocha P. Optymalizacja: wybrane metody z przykładami zastosowań. Warszawa: Wydawnictwo Naukowe PWN; 2009.   Google Scholar

Filipowicz B, Kwiecień J. Algorytmy stadne w problemach optymalizacji. Pomiary Automatyka, Robotyka. 2011;12:152–157.   Google Scholar

Yang X-S, Deb S. Cuckoo search via Lévy flight. In: Abraham A, Carvalho A, Herrera F, Pai V, editors. 2009 World Congress on Nature & Biologically Inspired Computing, 9–11 December 2009, Coimbatore, India: Proceedings. IEEE; 2009, p. 210–214. https://doi.org/10.1109/NABIC.2009.5393690. DOI: https://doi.org/10.1109/NABIC.2009.5393690   Google Scholar

Vázquez R, Sandoval G, Ambrosio J, B., How to generate the input current for exciting spiking neural model using the cuckoo search algorithm. In: Yang XS, editor. Cuckoo Search and Firefly Algorithm. Studies in Computational Intelligence. Vol. 516. Cham: Springer; 2014, p. 155–178. https://doi.org/10.1007/978-3-319-02141-6_8. DOI: https://doi.org/10.1007/978-3-319-02141-6_8   Google Scholar

Manteng RN. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic process. Physical Review E. 1994;49:46774683. https://doi.org/10.1103/PhysRevE.49.4677. DOI: https://doi.org/10.1103/PhysRevE.49.4677   Google Scholar

Viswanathan GM, Afanasyev V, Buldyrev SV, Havlin S, da Luz MGE, Raposo E, Stanley HE. Lévy flights in random searches. Physica A: Statistical Mechanics and its Applications. 2000;282(1–2):1–12. https://doi.org/10.1016/S0378-4371(00)00071-6. DOI: https://doi.org/10.1016/S0378-4371(00)00071-6   Google Scholar

Nolan J. Stable Distributions: Models for Heavy-Tailed Data. New York: Springer; 2016.   Google Scholar

Bovet A. An introduction to non-diusive transport models. ArXiv e-prints. 2015. https://doi.org/10.48550/arXiv.1508.01879.   Google Scholar

Chechkin AV, Metzler R, Klafter J, Gonchar VY. Introduction to the theory of Lévy flights. In: Klages R, Radons G, Sokolov IM, editors. Anomalous Transport: Foundations and Applications. Chichester: Wiley; 2008, p. 129–162. https://doi.org/10.1002/9783527622979.ch5. DOI: https://doi.org/10.1002/9783527622979.ch5   Google Scholar

Hughes BD. Random Walks and Random Environments. Oxford: Clarendon Press; 1995. DOI: https://doi.org/10.1093/oso/9780198537885.001.0001   Google Scholar

Yang X-S. Cuckoo Search (CS) Algorithm Version 1.3.0.0. MathWorks. File Exchange. [Internet] 2022. Available from: https://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm.   Google Scholar

Yang X-S. Firefly Algorithm Version 1.2.0.0. MathWorks. File Exchange. [Internet] 2021. Available from: https://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm.   Google Scholar

Roy S, Chaudhuri SS. Cuckoo search algorithm using Lévy flight: A review. International Journal of Modern Education and Computer Science. 2013;12:10–15. https://doi.org/10.5815/ijmecs.2013.12.02 DOI: https://doi.org/10.5815/ijmecs.2013.12.02   Google Scholar

Mareli M, Twala B. An adaptive Cuckoo search algorithm for optimisation. Applied Computing and Informatics. 2018;14(2):107–115. https://doi.org/10.1016/j.aci.2017.09.001. DOI: https://doi.org/10.1016/j.aci.2017.09.001   Google Scholar

Surjanovic S, Bingham D. Virtual library of simulation experiments: Test functions and datasets [Internet]. 2023 [cited 2023 Nov 15]. Available from: https://www.sfu.ca/%7Essurjano/index.html.   Google Scholar

Taillard E. Benchmarks for basic scheduling problems. European Journal of Operational Research. 1993;64(2):278–285. https://doi.org/10.1016/0377-2217(93)90182-M. DOI: https://doi.org/10.1016/0377-2217(93)90182-M   Google Scholar

Figure 9. Solutions for scenario 2 has been achieved using CS algorithm

Opublikowane

2024-02-15

Jak cytować

Pieprzycki, A., & Filipowicz, B. . (2024). Application of RRAP reliability optimization as a test of nature-inspired algorithms. Science, Technology and Innovation, 18(3-4), 1–14. https://doi.org/10.55225/sti.528

Numer

Dział

Artykuły oryginalne