On rational functions related to algorithms for a computation of roots
Part 1
DOI:
https://doi.org/10.5604/01.3001.0013.7274Słowa kluczowe:
algorithms, iterative methods, polynomials, recurrence relationsAbstrakt
We discuss a less known but surprising fact: a very old algorithm for computing square root known as the Bhaskara-Brouncker algorithm contains another and faster algorithms. A similar approach was obtained earlier by A.K. Yeyios [8] in 1992. By the way, we shall present a few useful facts as an essential completion of [8]. In particular, we present a direct proof that k – th Yeyios iterative algorithm is of order k. We also observe that Chebyshev polynomials Tn and Un are a special case of a more general construction. The most valuable idea followed this paper is contained in applications of a simple rational function .
Statystyka pobrań
Bibliografia
D. Braess, Nonlinear approximation theory, Springer Ser. Comput. Math. Springer, New York (1986). Google Scholar
L. Fox, I.B. Parker, Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London, New York, Toronto (1968). Google Scholar
E.S. Gawlik, Zolotariev iterations for the matrix square root, SIAM J. Matrix Anal. Appl. 40 (2) (2019), 696-719. Google Scholar
J.C. Mason, D.C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC (2003). Google Scholar
T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, John Wiley, New York. (2nd ed. of Rivlin) (1990). Google Scholar
H. Rutishauser, Betrachtungen zur Quadratwurzeliteration, Monath. f. Math. 67 (1963) 452-464. Google Scholar
J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NY (1083). Google Scholar
A.K. Yeyios, On two sequences of algorithms for approximating square roots, J. of Comp. Appl. Math. 40 (1992), 63-72. Google Scholar
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2019 Państwowa Wyższa Szkoła Zawodowa w Tarnowie & Autor

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.