On Vladimir Markov type inequality in L^p norms on the interval [-1; 1]
DOI:
https://doi.org/10.5604/01.3001.0013.7225Keywords:
Vladimir Markov type inequality, Lp normsAbstract
We prove inequality:
where Bp are constants independent of n = deg P with 1 ≤ p ≤ 2, which is sharp in the case k ≥ 3. A method presented in this note is based on a factorization of linear operator of k-th derivative throughout normed spaces of polynomial equipped with a Wiener type norm.
Downloads
References
M. Baran, New approch to Markov inequality in Lp norms, Approximation Theory: in Memory of A. K. Varma (N. K. Govil and alt., ed.), Marcel Dekker, New York (1998), 75-85. Google Scholar
M. Baran, L. Białas-Cież, Hölder continuity of the Green function and Markov brothers’ inequality, Constr. Approx. 40 (2014), no. 1, 121-140. Google Scholar
M. Baran, L. Białas-Cież, B. Milówka, On the best exponent in Markov inequality, Potential Analysis, 38 (2) (2013), 635–651. Google Scholar
M. Baran, A. Kowalska, P. Ozorka, Optimal factors in Vladimir Markov’s inequality in L2 norm, STI (2018). Google Scholar
M. Baran, B. Milówka, P. Ozorka, Markov’s property for k-th derivative, Ann. Polon. Math., 106 (2012), 31–40. Google Scholar
J. Bergh, J. Löfstörm, Interpolation Spaces. An Introduction, Springer Verlag, Berlin-Heidelberg-New York, (1976). Google Scholar
L. Białas-Cież, G. Sroka, Polynomial inequalities in Lp norms with generalized Jacobi weights, Math. Inequal. Appl. 22 (2019), no. 1, 261-274 Google Scholar
P. Borwein, T. Erd´elyi, Polynomials and Polynomial Inequalities, Springer, Berlin, 1995, Graduate Texts in Mathematics 161. Google Scholar
A. P. Calder´on, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. Google Scholar
Z. Ciesielski, On the A. A. Markov inequality for polynomials in the Lp case, in: ”Approximation theory”, Ed.: G. Anastassiou, pp., 257-262, Marcel Dekker, inc., New York, 1992. Google Scholar
P. Goetgheluck, On the Markov Inequality in Lp-Spaces, J. Approx. Theory 62 (2) (1990), 197-205. Google Scholar
P. Yu. Glazyrina, The Sharp Markov-Nikol’skii Inequality for Algebraic Polynomials in The Spaces Lq and L0 on a Closed Interval, Mathematical Notes, 84 (1) (2007), 3-22. Google Scholar
E. Hille, G. Szeg¨o, J. Tamarkin, On some generalisation of a theorem of A. Markoff, Duke Math. J. 3 (1937), 729-739. Google Scholar
Y. Katznelson, An introduction to harmonic analysis, (Third. ed.), New York, (2004). Google Scholar
B. Milówka, Markov’s inequality and a generalized Plesniak condition, East J. Approx. 11 (2005), 291–300. Google Scholar
Q. Rahman, G. Schmeisser, Analytic theory of polynomials, Clarendon Press, (2002). Google Scholar
W. Rudin, Functional Analysis, McGraw-Hill Book Google Scholar
E. Schmidt, Die asymptotische Bestimmung des Maximums des Integrals über das Quadrat der Ableitung eines normierten Polynoms, Sitzungsberichte der Preussischen Akademie, (1932), 287. Google Scholar
I. E. Simonov, Sharp Markov Brothers Type inequality in the Spaces Lp and L1 on a Closed Interval, Proc. Steklov Inst. of Math., 277, Suppl. 1 (2012), S161-S170. Google Scholar
G. Sroka, Constants in Markov’s inequality in LP ([−1, 1]) norms for k – th derivative of an algebraic polynomial, J. Approx. Theory 194 (2015,) 27-34 Google Scholar
E. M. Stein, Interpolation in polynomial classes and Markoff ’s inequality, Duke Math. J. 24 (1957), 467-476. Google Scholar
A. Zygmund, A remark on conjugate functions, Proc. London Math. Soc. 34 (1932), 392–400. Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 University of Applied Sciences in Tarnow, Poland & Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.