Characteristics of the oxygen molecule activation process on 3d selected transition metals — DFT calculations

Authors

  • Piotr Niemiec University of Applied Finances in Tarnow, Faculty of Mathematics and Natural Sciences, Department of Chemistry https://orcid.org/0000-0002-8788-8676
  • Aleksandra Anioł University of Applied Finances in Tarnow, Polytechnic Faculty

DOI:

https://doi.org/10.55225/sti.494

Keywords:

DFT, activation of molecular oxygen, solvated transition metal complexes

Abstract

The subject of this research  is the characterization of the activation process of the oxygen molecule on solvated selected transition metals (3d). In this study , using the Density Functional Theory, quantum-mechanical calculations were made, the purpose of which was to characterize the electronic structure of water and acetonitrile six-coordinated complexes with general formulas [TM(H2O)6]n+ and [TM(CH3CN)6]n+ and complexes with adsorbed at the metal center with an oxygen molecule ([TM(H2O)5-O2]n+ and [TM(CH3CN)5-O2]n+). The calculations were made using transition metal ions from the fourth period of periodic table: TM = Co2+, Fe2+, Mn2+, Ni2+, Zn2+, Cu2+ and Cr3+. Based on the calculations performed, it was found that each of the parameters analyzed in this work is a function of the introduced transition metal. Moreover, the effect of the transition metal used on the analyzed parameters (e.g. energetics of boundary orbitals, size of the energy gap, charges, etc.) exceeds the effect of the solvent used (H₂O/CH₃CN).

Downloads

Download data is not yet available.

Radoń M, Drabik G. Spin states and other ligand-field states of aqua complexes revisited with multireference Ab initio calculations including solvation effects. Journal of Chemical Theory and Computation. 2018;14(8):4010–4027. https://doi.org/10.1021/acs.jctc.8b00200. DOI: https://doi.org/10.1021/acs.jctc.8b00200   Google Scholar

Yepes D, Seidel R, Winter B, Blumberger J, Jaque P. Photoemission spectra and density functional theory calculations of 3d transition metal-aqua complexes (Ti-Cu) in aqueous solution. The Journal of Physical Chemistry B. 2014;118(24):6850–6863. https://doi.org/10.1021/jp5012389. DOI: https://doi.org/10.1021/jp5012389   Google Scholar

Yang Y, Ratner MA, Schatz GC. Multireference Ab initio study of ligand field D-d transitions in octahedral transition-metal oxide clusters. The Journal of Physical Chemistry C. 2014;118(50):29196–29208. https://doi.org/10.1021/jp5052672. DOI: https://doi.org/10.1021/jp5052672   Google Scholar

Rotzinger FP. Performance of molecular orbital methods and density functional theory in the computation of geometries and energies of metal aqua ions. The Journal of Physical Chemistry B. 2005;109(4):1510–1527. https://doi.org/10.1021/jp045407v. DOI: https://doi.org/10.1021/jp045407v   Google Scholar

Rotzinger FP. Structure of the transition states and intermediates formed in the water-exchange of metal hexaaqua ions of the first transition series. Journal of the American Chemical Society. 1996;118(28):6760–6766. https://doi.org/10.1021/ja960184a. DOI: https://doi.org/10.1021/ja960184a   Google Scholar

Ludwig T, Singh AR, Nørskov JK. Acetonitrile transition metal interfaces from first principles. The Journal of Physical Chemistry Letters. 2020;11(22):9802–9811. https://doi.org/10.1021/acs.jpclett.0c02692. DOI: https://doi.org/10.1021/acs.jpclett.0c02692   Google Scholar

Kang Y, Murray CB. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). Journal of the American Chemical Society. 2010;132(22):7568–7569. https://doi.org/10.1021/ja100705j. DOI: https://doi.org/10.1021/ja100705j   Google Scholar

Yang H, Zhang J, Sun K, Zou S, Fang J. Enhancing by weakening: Electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew. Chemie - Int. Ed. 2010;49(38):6848–6851. https://doi.org/10.1002/anie.201002888. DOI: https://doi.org/10.1002/anie.201002888   Google Scholar

Xu D, Liu Z, Yang H, Liu Q, Zhang J, Fang J, Zou S, Sun K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angewandte Chemie [International Edition]. 2009;48(23):4217–4221. https://doi.org/10.1002/anie.200900293. DOI: https://doi.org/10.1002/anie.200900293   Google Scholar

Kang Y, Pyo JB, Ye X, Gordon TR, Murray CB. Synthesis, Shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt 3Zn intermetallic nanocrystals. ACS Nano. 2012;6(6):5642–5647. https://doi.org/10.1021/nn301583g. DOI: https://doi.org/10.1021/nn301583g   Google Scholar

Baek J, Yun HJ, Yun D, Choi Y, Yi J. Preparation of highly dispersed chromium oxide catalysts supported on mesoporous silica for the oxidative dehydrogenation of propane using CO₂: Insight into the nature of catalytically active chromium sites. ACS Catalysis. 2012;2(9):1893–1903. https://doi.org/10.1021/cs300198u. DOI: https://doi.org/10.1021/cs300198u   Google Scholar

Li J, Shi Y, Xu L, Lu G. Selective oxidation of cyclohexane over transition-metal-incorporated hms in a solvent-free system. Industrial & Engineering Chemistry Research. 2010;490(11):5392–5399. https://doi.org/10.1021/ie100092x. DOI: https://doi.org/10.1021/ie100092x   Google Scholar

Rajabi F, Pineda A, Naserian S, Balu AM, Luque R, Romero AA. Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates. Green Chemistry. 2013;15(5):1232–1237. https://doi.org/10.1039/c3gc40110c. DOI: https://doi.org/10.1039/c3gc40110c   Google Scholar

Pathan S, Patel A. Transition-metal-substituted phosphomolybdates: Catalytic and kinetic study for liquid-phase oxidation of styrene. Industrial & Engineering Chemistry Research. 2013;52(34):11913–11919. https://doi.org/10.1021/ie400797u. DOI: https://doi.org/10.1021/ie400797u   Google Scholar

Banerjee D, Jagadeesh RV, Junge K, Pohl MM, Radnik J, Brückner A, Beller M. Convenient and mild epoxidation of alkenes using heterogeneous cobalt oxide catalysts. Angewandte Chemie [International Edition]. 2014;53(17):4359–4363. https://doi.org/10.1002/anie.201310420. DOI: https://doi.org/10.1002/anie.201310420   Google Scholar

Ashouri F, Zare M, Bagherzade M. Manganese and cobalt-terephthalate metal-organic frameworks as a precursor for synthesis of Mn2O3, Mn₃O₄ and Co₃O₄ nanoparticles: Active catalysts for olefin heterogeneous oxidation. Inorganic Chemistry Communications. 2015;61:73–76. https://doi.org/10.1016/j.inoche.2015.08.019. DOI: https://doi.org/10.1016/j.inoche.2015.08.019   Google Scholar

Qiu G, Dharmarathna S, Zhang Y, Opembe N, Huang H, Suib SL. Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. The Journal of Physical Chemistry C. C 2012;116(1):468–477. https://doi.org/10.1021/jp209911k. DOI: https://doi.org/10.1021/jp209911k   Google Scholar

Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M. A very simple method to synthesize nano-sized manganese oxide: An efficient catalyst for water oxidation and epoxidation of olefins. Dalton Transactions. 2012;41(36):11026–11031. https://doi.org/10.1039/c2dt30553d. DOI: https://doi.org/10.1039/c2dt30553d   Google Scholar

Najafpour MM, Amini M, Sedigh DJ, Rahimi F, Bagherzadeh M. Activated layered manganese oxides with deposited nano-sized gold or silver as an efficient catalyst for epoxidation of olefins. RSC Advances. 2013;3(46):24069–24074. https://doi.org/10.1039/c3ra45004j. DOI: https://doi.org/10.1039/c3ra45004j   Google Scholar

Song S, Wu Y, Ge S, Wang L, Wang Y, Guo Y, Zhan W, Guo Y. A Facile way to improve Pt atom efficiency for CO oxidation at low temperature: modification by transition metal oxides. ACS Catalysis. 2019;9(7):6177–6187. https://doi.org/10.1021/acscatal.9b01679. DOI: https://doi.org/10.1021/acscatal.9b01679   Google Scholar

Zhao S, Kang D, Liu Y, Wen Y, Xie X, Yi H, Tang X. Spontaneous formation of asymmetric oxygen vacancies in transition-metal-doped CeO₂ nanorods with improved activity for carbonyl sulfide hydrolysis. ACS Catalysis. 2020;10(20):11739–11750. https://doi.org/10.1021/acscatal.0c02832. DOI: https://doi.org/10.1021/acscatal.0c02832   Google Scholar

Zhang R, Ran T, Cao Y, Zhang Q, Dong F, Yang G, Zhou Y. Surface hydrogen atoms promote oxygen activation for solar light-driven NO oxidization over monolithic Α‑Ni(OH)2/Ni foam. Environmental Science & Technology. 2020;54(24):16221–16230. https://doi.org/10.1021/acs.est.0c05635. DOI: https://doi.org/10.1021/acs.est.0c05635   Google Scholar

Chen Y, Huang Z, Zhou M, Ma Z, Chen J, Tang X. Single silver adatoms on nanostructured manganese oxide surfaces: Boosting oxygen activation for benzene abatement. Environmental Science & Technology. 2017;51(4):2304–2311. https://doi.org/10.1021/acs.est.6b04340. DOI: https://doi.org/10.1021/acs.est.6b04340   Google Scholar

Eisenberg D, Slot TK, Rothenberg G. Understanding oxygen activation on metal- and nitrogen-codoped carbon catalysts. ACS Catalysis. 2018;8(9):8618–8629. https://doi.org/10.1021/acscatal.8b01045. DOI: https://doi.org/10.1021/acscatal.8b01045   Google Scholar

Cramer LA, Liu Y, Deshlahra P, Sykes ECH. Dynamic restructuring induced oxygen activation on AgCu near-surface alloys. The Journal of Physical Chemistry Letters. 2020;11(15):5844–5848. https://doi.org/10.1021/acs.jpclett.0c00887. DOI: https://doi.org/10.1021/acs.jpclett.0c00887   Google Scholar

Liu W, Wang Y, Ai Z, Zhang L. Hydrothermal synthesis of FeS2 as a high-efficiency fenton reagent to degrade alachlor via superoxide-mediated Fe(II)/Fe(III) cycle. ACS Applied Materials & Interfaces. 2015;7(51):28534–28544. https://doi.org/10.1021/acsami.5b09919. DOI: https://doi.org/10.1021/acsami.5b09919   Google Scholar

Turbomole: Program package for electronic structure calculation. Version 7.1. Karlsruhe: Turbomole GmbH. http://www.turbomole.com.   Google Scholar

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77(18):3865–3868. doi: https://doi.org/10.1103/ PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865   Google Scholar

Slater JC. The Self-Consistent Field for Molecular and Solids: Quantum Theory of Molecular and Solids. Vol. 4. New York: McGraw-Hill; 1974.   Google Scholar

Perdew JP, Wang Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Physical Review B. Condensed Matter 1992;46(20):12947–12954. doi: https://doi.org/10.1103/physrevb.46.12947. DOI: https://doi.org/10.1103/PhysRevB.46.12947   Google Scholar

Schaefer A, Horn H, Ahlrichs R. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. The Journal of Chemical Physics. 1992;97:2571.   Google Scholar

Schäfer A, Horn H, Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics. 1992;97(4):2571–2577. https://doi.org/10.1063/1.463096. DOI: https://doi.org/10.1063/1.463096   Google Scholar

Pearson RG. Hard and soft acids and bases. Journal of the American Chemical Society. 1963;85(22):3533–3539. https://doi.org/10.1021/ja00905a001. DOI: https://doi.org/10.1021/ja00905a001   Google Scholar

Pearson RG. Hard and soft acids and bases, HSAB. Part 1: Fundamental principles. Journal of Chemical Education. 1968;45(9):581–586. https://doi.org/10.1021/ed045p581. DOI: https://doi.org/10.1021/ed045p581   Google Scholar

Reed AE, Weinstock RB, Weinhold F. Natural population analysis. The Journal of Chemical Physics. 1985;83(2):735–746. https://doi.org/10.1063/1.449486. DOI: https://doi.org/10.1063/1.449486   Google Scholar

Jensen F. Introduction to Computational Chemistry. Chichester: Wiley; 2016   Google Scholar

Mayer I. Charge, bond order and valence in the AB initio SCF theory. Chemical Physics Letters. 1983;97(3):270–274. https://doi.org/10.1016/0009-2614(83)80005-0. DOI: https://doi.org/10.1016/0009-2614(83)80005-0   Google Scholar

Klamt A, Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society: Perkin Transactions 2. 1993;5:799–805. https://doi.org/10.1039/P29930000799. DOI: https://doi.org/10.1039/P29930000799   Google Scholar

Geneste G, Morillo J, Finocchi F. Adsorption and diffusion of Mg, O, and O₂ on the MgO(001) flat surface. Journal of Chemical Physics. 2005;122(17). https://doi.org/10.1063/1.1886734. DOI: https://doi.org/10.1063/1.1886734   Google Scholar

Freund HJ, Pacchioni G. Oxide Ultra-thin films on metals: New materials for the design of supported metal catalysts. Chemical Society Reviews. 2008;37(10):2224–2242. https://doi.org/10.1039/b718768h. DOI: https://doi.org/10.1039/b718768h   Google Scholar

Ge Q, Kose R, King DA. Adsorption energetics and bonding from femtomole calorimetry and from first principles theory. Advances in Catalysis. 2000;45(M):207–259. https://doi.org/10.1016/s0360-0564(02)45015-8. DOI: https://doi.org/10.1016/S0360-0564(02)45015-8   Google Scholar

Struktura kompleksu [TM(CH₃CN)₅–O₂]n+

Published

2023-12-21

How to Cite

Niemiec, P., & Anioł, A. (2023). Characteristics of the oxygen molecule activation process on 3d selected transition metals — DFT calculations. Science, Technology and Innovation, 17(1-2), 30–40. https://doi.org/10.55225/sti.494

Issue

Section

Original articles