The influence of selected factors on the operation of electronic systems in near space

Authors

  • Andrzej Kołodziej University of Applied Sciences in Tarnow, Polytechnic Faculty, Department of Electronics, Telecommunications and Mechatronics, ul. Mickiewicza 8, 33-100 Tarnów, Poland https://orcid.org/0000-0002-3494-3264
  • Robert Wielgat University of Applied Sciences in Tarnow, Polytechnic Faculty, Department of Electronics, Telecommunications and Mechatronics, ul. Mickiewicza 8, 33-100 Tarnów, Poland https://orcid.org/0000-0003-0229-6493

DOI:

https://doi.org/10.55225/sti.633

Keywords:

near space, cosmic radiation, electronic systems, redundancy

Abstract

The paper reviews scientific reports describing the influence of selected physical factors in near space on the operation of electronic systems depending on the distance from the Earth’s surface. This influence is usually destructive. Therefore, devices operating in space require the use of electronic components and devices in which special materials have been used and design solutions have been applied that make them resistant to difficult and variable operating conditions. On the one hand, we are talking about rapidly changing pressure, humidity, temperature and gravitational field during ascent and about long-term stay in space, where conditions occur that are not encountered in any environment on Earth. These conditions are not only deadly dangerous to people but can also damage or even completely destroy electronic equipment of measuring probes, spaceships, and vehicles. The paper describes not only the destructive factors to which electronic systems transferred to extraterrestrial space are exposed but also methods of protecting them against the aforementioned factors, including methods of increasing resilience (hardening) and redundant methods protecting electronic systems from the effects of radiation and pressure changes.

Downloads

Download data is not yet available.

Hałas A. Technika próżni. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej; 2017.   Google Scholar

Fox KC. The Van Allen Probes: Honoring the origins of magnetospheric science. Science X Network. [Internet]. 12 listopada 2012. [cytowane 19 grudnia 2024]. Dostępne na: https://phys.org/news/2012-11-van-allen-probes-honoring-magnetospheric.html.   Google Scholar

Ganushkina NY, Dandouras I, Shprits YY, Cao J. Locations of boundaries of outer and inner radiation belts as observed by Cluster and Double Star. Journal of Geophysical Research. 2011;116( A9):1–18. https://doi.org/10.1029/2010JA016376.   Google Scholar

Whitt KK, Byrd D. May’s solar storm created a new Van Allen belt. EarthSky. [Internet]. 1 sierpnia 2024. [cytowane 19 grudnia 2024]. Dostępne na: https://earthsky.org/earth/2024-mays-solar-storm-new-ring-around-earth-van-allen-belt/.   Google Scholar

Edmonds LD, Barnes CE, Sheick LZ. An Introduction to Space Radiation Effects on Microelectronics. JPL Publication 00-06. Pasadena, CA: California Institute of Technology, Jet Propulsion Laboratory; 2000. [Internet; cytowane 19 grudnia 2024]. Dostępne na: https://parts.jpl.nasa.gov/pdf/JPL00-62.pdf.   Google Scholar

Kikoin IK. Tablicy Fizićeskich Velićin. Moskwa: Atomizdat; 1976.   Google Scholar

Kołodziej A, Krewniak P. Radiation damage of amorphous and microcrystalline silicon image sensor structure. MRS Online Proceedings Library. 1997;487:381–386. https://doi.org/10.1557/PROC-487-381.   Google Scholar

Gumiela M. Podsumowanie eksperymentu RadFET. PW-SAT3. [Internet]. 15 czerwca 2019. [cytowane 19 grudnia 2024]. Dostępne na: https://pw-sat.pl/podsumowanie-eksperymentu-radfet.   Google Scholar

Mlynczak MG, Hunt LA, Garcia RR, Harvey VL, Marshall BT, Yue J, Mertens CJ, Russell JM III. Cooling and contraction of the mesosphere and lower thermosphere from 2002 to 2021. Journal of Geophysical Research: Atmospheres. 2022;127(22),e2022JD036767. https://doi.org/10.1029/2022JD036767.   Google Scholar

Groszkowski J. Technika wysokiej próżni. Warszawa: WNT; 1978.   Google Scholar

Antosz J, Wielgat R, Plata S, Jasielski P, Pękala, D, Arabik, R, Witek M. Stratospheric missions of the University of Applied Sciences in Tarnow: Part 2: data analysis. Science, Technology and Innovation. 2023;18(3–4):46–64. https://doi.org/10.55225/sti.580.   Google Scholar

Pas Van Allena. In: Wikipedia: wolna encyklopedia. [Internet; cytowane 19 grudnia 2024]. Dostępne na: https://pl.wikipedia.org/wiki/Pas_Van_Allena.   Google Scholar

Dodd PE. Physics-based simulation of single-event effects. IEEE Transactions on Device and Materials Reliability. 2005;5(3):343–357. https://doi.org/10.1109/TDMR.2005.855826.   Google Scholar

ESA. Space debris by the numbers. Darmstadt: ESA’s Space Debris Office at ESOC. [Internet; cytowane 19 grudnia 2024]. Dostępne na: https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers.   Google Scholar

Messenger GC, Ash MS. The Effects of Radiation on Electronic Systems. 2nd ed. Hapman and Hall; 1992.   Google Scholar

Normand E. Single event upset at ground level. IEEE Transactions on Nuclear Science. 1996;43(6):2742–2750. https://doi.org/10.1109/23.556861.   Google Scholar

Schwank JR, Shaneyfelt MR, Dodd PE. Radiation hardness assurance testing of microelectronic devices and integrated circuits: radiation environments, physical mechanisms, and foundations for hardness assurance. IEEE Transactions on Nuclear Science. 2013;60(3):2074–2100. https://doi.org/10.1109/TNS.2013.2254722.   Google Scholar

Baumann RC. Radiation-induced soft errors in advanced semiconductor technologies. IEEE Transactions on Device and Materials Reliability. 2005;5(3):305–316. https://doi.org/10.1109/TDMR.2005.853449.   Google Scholar

Ferlet-Cavrois V, Massengill LW, Gouker P. Single event transients in digital CMOS: A review. IEEE Transactions on Nuclear Sciences. 2013;60(3):1767–1790. https://doi.org/10.1109/TNS.2013.2255624.   Google Scholar

Schrimpf RD, Fleetwood DM. Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices. Singapore–London: World Scientific; 2004. https://doi.org/10.1142/5607.   Google Scholar

Jaworowska M. Promieniowanie a elektronika – wpływ i ochrona. Portal Branżowy Elektronika B2B [Internet]. 22 grudnia 2021. [cytowane 19 grudnia 2024]. Dostępne na: https://elektronikab2b.pl/technika/54353-promieniowanie-a-elektronika-wplyw-i-ochrona.   Google Scholar

Przykładowa komora próżniowa

Published

2025-07-11

How to Cite

Kołodziej, A., & Wielgat, R. (2025). The influence of selected factors on the operation of electronic systems in near space. Science, Technology and Innovation, 20(1), 42–50. https://doi.org/10.55225/sti.633

Issue

Section

Review articles