The influence of selected factors on the operation of electronic systems in near space
DOI:
https://doi.org/10.55225/sti.633Keywords:
near space, cosmic radiation, electronic systems, redundancyAbstract
The paper reviews scientific reports describing the influence of selected physical factors in near space on the operation of electronic systems depending on the distance from the Earth’s surface. This influence is usually destructive. Therefore, devices operating in space require the use of electronic components and devices in which special materials have been used and design solutions have been applied that make them resistant to difficult and variable operating conditions. On the one hand, we are talking about rapidly changing pressure, humidity, temperature and gravitational field during ascent and about long-term stay in space, where conditions occur that are not encountered in any environment on Earth. These conditions are not only deadly dangerous to people but can also damage or even completely destroy electronic equipment of measuring probes, spaceships, and vehicles. The paper describes not only the destructive factors to which electronic systems transferred to extraterrestrial space are exposed but also methods of protecting them against the aforementioned factors, including methods of increasing resilience (hardening) and redundant methods protecting electronic systems from the effects of radiation and pressure changes.
Downloads
References
Hałas A. Technika próżni. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej; 2017. Google Scholar
Fox KC. The Van Allen Probes: Honoring the origins of magnetospheric science. Science X Network. [Internet]. 12 listopada 2012. [cytowane 19 grudnia 2024]. Dostępne na: https://phys.org/news/2012-11-van-allen-probes-honoring-magnetospheric.html. Google Scholar
Ganushkina NY, Dandouras I, Shprits YY, Cao J. Locations of boundaries of outer and inner radiation belts as observed by Cluster and Double Star. Journal of Geophysical Research. 2011;116( A9):1–18. https://doi.org/10.1029/2010JA016376. Google Scholar
Whitt KK, Byrd D. May’s solar storm created a new Van Allen belt. EarthSky. [Internet]. 1 sierpnia 2024. [cytowane 19 grudnia 2024]. Dostępne na: https://earthsky.org/earth/2024-mays-solar-storm-new-ring-around-earth-van-allen-belt/. Google Scholar
Edmonds LD, Barnes CE, Sheick LZ. An Introduction to Space Radiation Effects on Microelectronics. JPL Publication 00-06. Pasadena, CA: California Institute of Technology, Jet Propulsion Laboratory; 2000. [Internet; cytowane 19 grudnia 2024]. Dostępne na: https://parts.jpl.nasa.gov/pdf/JPL00-62.pdf. Google Scholar
Kikoin IK. Tablicy Fizićeskich Velićin. Moskwa: Atomizdat; 1976. Google Scholar
Kołodziej A, Krewniak P. Radiation damage of amorphous and microcrystalline silicon image sensor structure. MRS Online Proceedings Library. 1997;487:381–386. https://doi.org/10.1557/PROC-487-381. Google Scholar
Gumiela M. Podsumowanie eksperymentu RadFET. PW-SAT3. [Internet]. 15 czerwca 2019. [cytowane 19 grudnia 2024]. Dostępne na: https://pw-sat.pl/podsumowanie-eksperymentu-radfet. Google Scholar
Mlynczak MG, Hunt LA, Garcia RR, Harvey VL, Marshall BT, Yue J, Mertens CJ, Russell JM III. Cooling and contraction of the mesosphere and lower thermosphere from 2002 to 2021. Journal of Geophysical Research: Atmospheres. 2022;127(22),e2022JD036767. https://doi.org/10.1029/2022JD036767. Google Scholar
Groszkowski J. Technika wysokiej próżni. Warszawa: WNT; 1978. Google Scholar
Antosz J, Wielgat R, Plata S, Jasielski P, Pękala, D, Arabik, R, Witek M. Stratospheric missions of the University of Applied Sciences in Tarnow: Part 2: data analysis. Science, Technology and Innovation. 2023;18(3–4):46–64. https://doi.org/10.55225/sti.580. Google Scholar
Pas Van Allena. In: Wikipedia: wolna encyklopedia. [Internet; cytowane 19 grudnia 2024]. Dostępne na: https://pl.wikipedia.org/wiki/Pas_Van_Allena. Google Scholar
Dodd PE. Physics-based simulation of single-event effects. IEEE Transactions on Device and Materials Reliability. 2005;5(3):343–357. https://doi.org/10.1109/TDMR.2005.855826. Google Scholar
ESA. Space debris by the numbers. Darmstadt: ESA’s Space Debris Office at ESOC. [Internet; cytowane 19 grudnia 2024]. Dostępne na: https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers. Google Scholar
Messenger GC, Ash MS. The Effects of Radiation on Electronic Systems. 2nd ed. Hapman and Hall; 1992. Google Scholar
Normand E. Single event upset at ground level. IEEE Transactions on Nuclear Science. 1996;43(6):2742–2750. https://doi.org/10.1109/23.556861. Google Scholar
Schwank JR, Shaneyfelt MR, Dodd PE. Radiation hardness assurance testing of microelectronic devices and integrated circuits: radiation environments, physical mechanisms, and foundations for hardness assurance. IEEE Transactions on Nuclear Science. 2013;60(3):2074–2100. https://doi.org/10.1109/TNS.2013.2254722. Google Scholar
Baumann RC. Radiation-induced soft errors in advanced semiconductor technologies. IEEE Transactions on Device and Materials Reliability. 2005;5(3):305–316. https://doi.org/10.1109/TDMR.2005.853449. Google Scholar
Ferlet-Cavrois V, Massengill LW, Gouker P. Single event transients in digital CMOS: A review. IEEE Transactions on Nuclear Sciences. 2013;60(3):1767–1790. https://doi.org/10.1109/TNS.2013.2255624. Google Scholar
Schrimpf RD, Fleetwood DM. Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices. Singapore–London: World Scientific; 2004. https://doi.org/10.1142/5607. Google Scholar
Jaworowska M. Promieniowanie a elektronika – wpływ i ochrona. Portal Branżowy Elektronika B2B [Internet]. 22 grudnia 2021. [cytowane 19 grudnia 2024]. Dostępne na: https://elektronikab2b.pl/technika/54353-promieniowanie-a-elektronika-wplyw-i-ochrona. Google Scholar

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrzej Kołodziej, Robert Wielgat

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.