Characterization of a solar cell by varying illumination

Authors

  • Andrzej Kołodziej University of Applied Sciences in Tarnow, Polytechnic Faculty, Department of Electronics, Telecommunications and Mechatronics, Poland https://orcid.org/0000-0002-3494-3264
  • Michał Kołodziej Private scientific activity, Kraków, Poland

DOI:

https://doi.org/10.5604/01.3001.0014.7006

Keywords:

thin films, solar cell measurement, silicon, I–V characteristic, varying illumination

Abstract

This work aims to confirm that the single-diode model of a monocrystalline cell can be used successfully also for thin-film solar cells when their basic parameters are calculated using the method of changing illumination. The authors describe the experimental procedure, in which I–V curves of thin-film solar cells are measured when illumination levels are changing. In experiments, a fully reflective 500 W solar simulator is used as an excellent broadband white light source, which provides the range of 0.01–10 Sun settings.

Downloads

Download data is not yet available.

Sze SM. Physics of semiconductor devices. New York: Wiley Interscience; 1969.   Google Scholar

Wolf M, Noel GT, Stirn RJ. Investigation of the double exponential in the current—voltage characteristics of silicon solar cells. IEEE Transaction on Electron Devices. 1977;24(4):419–428. doi: https://doi.org/10.1109/T-ED.1977.18750.   Google Scholar

Fahrenbruch AL, Bube RH. Fundamentals of solar cells: Photovoltaic solar energy conversion. New York–London: Academic Press; 1983. doi: https://doi.org/10.1016/B978-0-12-247680-8.X5001-4.   Google Scholar

Tamrakar R, Gupta A. A review: Extraction of solar cell modelling parameters. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering. 2015;3(1):55–60. doi: https://doi.org/10.17148/IJIREEICE.2015.3111.   Google Scholar

Rhouma MBH, Gastli A. An extraction method for the parameters of the solar cell single-diode-model. 2nd European Conference on Electrical Engineering and Computer Science (EECS). 2018:433–437. doi: https://doi.org/10.1109/EECS.2018.00086.   Google Scholar

Pysch D, Mette A, Glunz SW. A review and comparison of different methods to determine the series resistance of solar cells. Solar Energy Materials and Solar Cells. 2007;91(18):1698–1706.   Google Scholar

Baker-Finch SC, McIntosh, KR. A freeware program for precise optical analysis of the front surface of a solar cell. 35th IEEE Photovoltaic Specialists Conference. 2010:002184–002187. doi: https://doi.org/10.1109/PVSC.2010.5616132.   Google Scholar

Kołodziej A. Stability of thin film TfT’s and solar cells. Krakow: AGH University of Science and Technology; 2008.   Google Scholar

Kołodziej A. Staebler-Wronski effect in amorphous silicon and its alloys. Opto-Electronics Review. 2004;12(1):21–32.   Google Scholar

Hinken D, Schinke C, Herlufsen S, Schmidt A, Bothe K, Brendel R. Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers. The Review of Scientific Instruments. 2011;83(3):1–9. doi: https://doi.org/10.1063/1.3541766.   Google Scholar

Schumacher J. Numerical simulation of silicon solar cells with novel cell structures. [doctoral dissertation]. Konstanz: Universität Konstanz; 2000.   Google Scholar

Merten J. Photovoltaic with amorphous silicon: Technological, physical and technical aspects. [doctoral dissertation]. Barcelona: Universitat de Barcelona; 1996.   Google Scholar

Kołodziej A, Krewniak P, Nowak S. Improvements of thin silicon solar cell efficiency. Opto-Electronics Review. 2003;11(4):281–289.   Google Scholar

Yang Y, Xu G, Zhang K, Zhang X, Shen H, Altermatt PP, Ver-linden PJ, Feng Z. Analysis of series resistance of industrial crystalline silicon solar cells by numerical simulation and analytical modelling. European Photovoltaic Solar Energy Conference. 2013;28:1558–1561.   Google Scholar

Kołodziej A. Raport 2016 for the NCN [unpublished]. Contract no. NCN/2011/01/B/ST7/06005.   Google Scholar

Kishore R. Accurate analytical expressions for the parameters of the single exponential model of the solar cells. Solid-State Electronics. 1989;32(6):493–495. doi: https://doi.org/10.1016/0038-1101(89)90032-4.   Google Scholar

Fong KC, McIntosh KR, Blakers AW. Accurate series resistance measurement of solar cells. Progress in Photovoltaics. 2011;21(4):490–499. doi: https://doi.org/10.1002/pip.1216.   Google Scholar

Wronski CR, von Roedern B, Kołodziej A. Thin-film Si:H-based solar cells. Vacuum: Surface Engineering, Surface Instrumentation and Vacuum Technology. 2008;82:1145–1150. doi: https://doi.org/10.1016/j.vacuum.2008.01.043.   Google Scholar

Kołodziej A, Kołodziej T, Kołodziej M. Low temperature manufacturing of Si nanocrystallites in the SiOx matrix applicable in solar cells. IEEE 39th Photovoltaic Specialists Conference (PVSC). 2013: 0580-0585. doi: https://doi.org/10.1109/PVSC.2013.6744218.   Google Scholar

Kołodziej A, Kołodziej M, Kołodziej T. Thin film hybrid structures perovskite and silicon photovoltaic cells. Science, Technology and Innovations. 2018;2 (1):27–30. doi: https://doi.org/10.5604/01.3001.0012.1385.   Google Scholar

Examples of approximate I–V characteristics for different illumination levels are shown

Downloads

Published

2020-01-31

How to Cite

Kołodziej, A., & Kołodziej, M. (2020). Characterization of a solar cell by varying illumination. Science, Technology and Innovation, 10(3), 8–14. https://doi.org/10.5604/01.3001.0014.7006

Issue

Section

Original articles

Most read articles by the same author(s)