Application of RRAP reliability optimization as a test of nature-inspired algorithms
DOI:
https://doi.org/10.55225/sti.528Keywords:
reliability optimization, RRAP, Firefly Algorithm (FA), Cuckoo Search (CS), ANOVA, Lévy flightAbstract
This paper presents a discussion on the application of two swarm intelligence algorithms, Cuckoo Search (CS) and Firey Algorithm (FA), to maximize the reliability of two complex systems with resource constraints, which have been well-known in the literature. The reliability of the systems is also evaluated using several classical methods. The results indicate that although the CS algorithm, which utilizes Lévy flight, is eective, the FA rey algorithm outperformed it in the presented optimization tasks, within the given parameter range. These ndings contribute to the ongoing discussion on using nature-inspired algorithms for solving Reliability Redundancy Allocation Problem (RRAP) problems, and the two test scenarios used in the study can be useful for validating other algorithms in RRAP problems. The paper introduces metrics and methods for analyzing and comparing the performance of algorithms in RRAP optimization, including the comparison of criterion function values and other parameters introduced in the paper. Additionally, the paper discusses statistical analyses of variance (ANOVA) with post-hoc RIR Tuckey tests.
Downloads
References
Sobczak W. Podstawy probabilistyczne teorii systemów informacyjnych. Warszawa: Wydawnictwa Naukowo-Techniczne; 1981. Google Scholar
Yang X-S. Multiobjective firefly algorithm for continuous optimization. Engineering with Computers. 2013;29:175–184. https://doi.org/10.1007/s00366-012-0254-1. DOI: https://doi.org/10.1007/s00366-012-0254-1 Google Scholar
Klempka R, Filipowicz B. Comparison of using the genetic algorithm and cuckoo search for multicriteria optimisation with limitation. Turkish Journal of Electrical Engineering and Computer Sciences. 2017;25:1300–1310. https://doi.org/10.3906/elk-1511-252. DOI: https://doi.org/10.3906/elk-1511-252 Google Scholar
Kwiecień J. Algorytmy stadne w rozwiązywaniu wybranych zagadnień optymalizacji dyskretnej i kombinatorycznej. Kraków: Wydawnictwa AGH; 2015. Google Scholar
Kwiecień J, Filipowicz B. Optymalizacja niezawodności złożonych systemów za pomocą algorytmu świetlika. Eksploatacja i Niezawodność. 2017;19(2):296–301. https://doi.org/10.17531/ein.2017.2.18. DOI: https://doi.org/10.17531/ein.2017.2.18 Google Scholar
Yang X-S. Nature-Inspired Optimization Algorithms. Cham: Elsevier; 2014. https://doi.org/10.1016/C2013-0-01368-0. DOI: https://doi.org/10.1016/C2013-0-01368-0 Google Scholar
Fuksa AK. Zastosowanie sztucznej inteligencji w optymalizacji niezawodnościowej systemów. [doctoral dissertation]. Kraków: Akademia Górniczo-Hutnicza im. H. Kołłątaja; 2017. Google Scholar
Kuo S-Y, Lu S-K, Yeh F-M. Determining terminal-pair reliability based on edge expansion diagrams using OBDD. IEEE Transactions on Reliability. 1999;48(3):234–246. https://doi.org/10.1109/24.799845. DOI: https://doi.org/10.1109/24.799845 Google Scholar
Yeh F-M, Lu S-K, Kuo S-Y. OBDD-based evaluation of k-terminal network reliability. IEEE Transactions on Reliability. 2002;51(4):443–451. https://doi.org/10.1109/TR.2002.804736. DOI: https://doi.org/10.1109/TR.2002.804736 Google Scholar
Kim H-G, Bae C-O, Park D-J. Reliability–redundancy optimization using simulated annealing algorithms. Journal of Quality in Maintenance Engineering. 2006;12(4): 354–363. https://doi.org/10.1108/13552510610705928. DOI: https://doi.org/10.1108/13552510610705928 Google Scholar
dos Santos Coelho L. An effcient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications. Reliability Engineering and System Safety. 2009;94(4):830–837. https://doi.org/10.1016/j.ress.2008.09.001. DOI: https://doi.org/10.1016/j.ress.2008.09.001 Google Scholar
Liu Y, Qin G. A modified particle swarm optimization algorithm for reliability redundancy optimization problem. Journal of Computers. 2014;9(9):2124–2131. DOI: https://doi.org/10.4304/jcp.9.9.2124-2131 Google Scholar
Yeh W-C, Hsieh T-J. Solving reliability redundancy allocation problems using an articial bee colony algorithm. Computers and Operations Research. 2011;38(11):1465–1473. https://doi.org/10.1016/j.cor.2010.10.028. DOI: https://doi.org/10.1016/j.cor.2010.10.028 Google Scholar
Kanagaraj G, Ponnambalam SG, Jawahar N. A hybrid cuckoo search and genetic algorithm for reliability–redundancy allocation problems. Computers and Industrial Engineering. 2013,66(4):1115–1124. https://doi.org/10.1016/j.cie.2013.08.003. DOI: https://doi.org/10.1016/j.cie.2013.08.003 Google Scholar
Liu Y. Improved bat algorithm for reliability–redundancy allocation problems. International Journal of Security and Its Applications. 2016;10(2):1–12. http://dx.doi.org/10.14257/ijsia.2016.10.2.01. DOI: https://doi.org/10.14257/ijsia.2016.10.2.01 Google Scholar
Agarwa M, Sharm VK. Ant colony approach to constrained redundancy optimization in binary systems. Applied Mathematical Modelling. 2010;34(4):992–1003. https://doi.org/10.1016/j.apm.2009.07.016. DOI: https://doi.org/10.1016/j.apm.2009.07.016 Google Scholar
Mellal MA, Zio E. System reliability–redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm. Reliability Engineering and System Safety. 2020;201:106973. https://doi.org/10.1016/j.ress.2020.106973. DOI: https://doi.org/10.1016/j.ress.2020.106973 Google Scholar
Rakhi K, Pahuja GL. Solving reliability redundancy allocation problem using grey wolf optimization algorithm. Journal of Physics: Conference Series. 2020;1706:012155. https://doi.org/10.1088/1742-6596/1706/1/012155. DOI: https://doi.org/10.1088/1742-6596/1706/1/012155 Google Scholar
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software. 2014;69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007. DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007 Google Scholar
Ardakan M, Rezvan M. Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II. Reliability Engineering and System Safety. 2018;172:225–238. https://doi.org/10.1016/j.ress.2017.12.019. DOI: https://doi.org/10.1016/j.ress.2017.12.019 Google Scholar
Chen T. IAs based approach for reliability redundancy allocation problems. Applied Mathematics and Computation. 2006;182(2):1556–1567. https://doi.org/10.1016/j.amc.2006.05.044. DOI: https://doi.org/10.1016/j.amc.2006.05.044 Google Scholar
Harish G. An approach for solving constrained reliability–redundancy allocation problems using cuckoo search algorithm, Beni-Suef University Journal of Basic and Applied Sciences. 2015;4(1):14–25. https://doi.org/10.1016/j.bjbas.2015.02.003. DOI: https://doi.org/10.1016/j.bjbas.2015.02.003 Google Scholar
Hikita M, Nakagawa Y, Nakashima K, Narihisa H. Reliability optimization of system by a surrogate-constraints algorithm. IEEE Transactions on Reliability. 1992;41(3): 473–480. https://doi.org/10.1109/24.159825. DOI: https://doi.org/10.1109/24.159825 Google Scholar
Hsieh Y-C, Chen T-C, Bricker DL. Genetic algorithms for reliability design problems. Microelectronics Reliability. 1998;38(10):1599–1605. https://doi.org/10.1016/S0026-2714(98)00028-6. DOI: https://doi.org/10.1016/S0026-2714(98)00028-6 Google Scholar
Liu Z, Chen J-H, Tan S-Y, Yeh W-C. A novel simplied swarm optimization for generalized reliability redundancy allocation problem. arXiv:2110.00133; 2021. https://doi.org/10.48550/arXiv.2110.00133. Google Scholar
Saleem E, Dao T-M, Liu Z. Multiple-objective optimization and design of series-parallel systems using novel hybrid genetic algorithm meta-heuristic approach. World Journal of Engineering and Technology. 2018;6:532–555. https://doi.org/10.4236/wjet.2018.63032. DOI: https://doi.org/10.4236/wjet.2018.63032 Google Scholar
Wu P, Gao L, Zou D, Li S. An improved particle swarm optimization algorithm for reliability problems. ISA Transactions. 2011;50(1):71–81. https://doi.org/10.1016/j.isatra.2010.08.005. DOI: https://doi.org/10.1016/j.isatra.2010.08.005 Google Scholar
Marouani H, Al-mutiri O. Optimization of reliability redundancy allocation problems: A review of the evolutionary algorithms. Computers, Materials and Continua. 2022;71(1):537–571. https://doi.org/10.32604/cmc.2022.020098. DOI: https://doi.org/10.32604/cmc.2022.020098 Google Scholar
Valian E. Solving reliability optimization problems. In: Yang X-S, editor. Cuckoo Search and Firey Algorithm Theory and Applications. London: Springer; 2014, p. 195–216. DOI: https://doi.org/10.1007/978-3-319-02141-6_10 Google Scholar
Ghasemi M, Rahimnejad A, Hemmati R, Akbari E, Gadsden SA. Wild Geese Algorithm: A novel algorithm for large scale optimization based on the natural life and death of wild geese. Array. 2021;11:100074. https://doi.org/10.1016/j.array.2021.100074. DOI: https://doi.org/10.1016/j.array.2021.100074 Google Scholar
Devarapalli R, Kumar V. Power system oscillation damping controller design: A novel approach of integrated HHO-PSO algorithm. Archives of Control Sciences. 2021;31(67):553–591. https://doi.org/10.24425/acs.2021.138692. DOI: https://doi.org/10.24425/acs.2021.138692 Google Scholar
Pijarski P. Optymalizacja heurystyczna w ocenie warunków pracy i planowania rozwoju systemu elektroenergetycznego. Lublin: Politechnika Lubelska; 2019. Google Scholar
Kusiak J, Danielewska-Tułecka A, Oprocha P. Optymalizacja: wybrane metody z przykładami zastosowań. Warszawa: Wydawnictwo Naukowe PWN; 2009. Google Scholar
Filipowicz B, Kwiecień J. Algorytmy stadne w problemach optymalizacji. Pomiary Automatyka, Robotyka. 2011;12:152–157. Google Scholar
Yang X-S, Deb S. Cuckoo search via Lévy flight. In: Abraham A, Carvalho A, Herrera F, Pai V, editors. 2009 World Congress on Nature & Biologically Inspired Computing, 9–11 December 2009, Coimbatore, India: Proceedings. IEEE; 2009, p. 210–214. https://doi.org/10.1109/NABIC.2009.5393690. DOI: https://doi.org/10.1109/NABIC.2009.5393690 Google Scholar
Vázquez R, Sandoval G, Ambrosio J, B., How to generate the input current for exciting spiking neural model using the cuckoo search algorithm. In: Yang XS, editor. Cuckoo Search and Firefly Algorithm. Studies in Computational Intelligence. Vol. 516. Cham: Springer; 2014, p. 155–178. https://doi.org/10.1007/978-3-319-02141-6_8. DOI: https://doi.org/10.1007/978-3-319-02141-6_8 Google Scholar
Manteng RN. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic process. Physical Review E. 1994;49:46774683. https://doi.org/10.1103/PhysRevE.49.4677. DOI: https://doi.org/10.1103/PhysRevE.49.4677 Google Scholar
Viswanathan GM, Afanasyev V, Buldyrev SV, Havlin S, da Luz MGE, Raposo E, Stanley HE. Lévy flights in random searches. Physica A: Statistical Mechanics and its Applications. 2000;282(1–2):1–12. https://doi.org/10.1016/S0378-4371(00)00071-6. DOI: https://doi.org/10.1016/S0378-4371(00)00071-6 Google Scholar
Nolan J. Stable Distributions: Models for Heavy-Tailed Data. New York: Springer; 2016. Google Scholar
Bovet A. An introduction to non-diusive transport models. ArXiv e-prints. 2015. https://doi.org/10.48550/arXiv.1508.01879. Google Scholar
Chechkin AV, Metzler R, Klafter J, Gonchar VY. Introduction to the theory of Lévy flights. In: Klages R, Radons G, Sokolov IM, editors. Anomalous Transport: Foundations and Applications. Chichester: Wiley; 2008, p. 129–162. https://doi.org/10.1002/9783527622979.ch5. DOI: https://doi.org/10.1002/9783527622979.ch5 Google Scholar
Hughes BD. Random Walks and Random Environments. Oxford: Clarendon Press; 1995. DOI: https://doi.org/10.1093/oso/9780198537885.001.0001 Google Scholar
Yang X-S. Cuckoo Search (CS) Algorithm Version 1.3.0.0. MathWorks. File Exchange. [Internet] 2022. Available from: https://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm. Google Scholar
Yang X-S. Firefly Algorithm Version 1.2.0.0. MathWorks. File Exchange. [Internet] 2021. Available from: https://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm. Google Scholar
Roy S, Chaudhuri SS. Cuckoo search algorithm using Lévy flight: A review. International Journal of Modern Education and Computer Science. 2013;12:10–15. https://doi.org/10.5815/ijmecs.2013.12.02 DOI: https://doi.org/10.5815/ijmecs.2013.12.02 Google Scholar
Mareli M, Twala B. An adaptive Cuckoo search algorithm for optimisation. Applied Computing and Informatics. 2018;14(2):107–115. https://doi.org/10.1016/j.aci.2017.09.001. DOI: https://doi.org/10.1016/j.aci.2017.09.001 Google Scholar
Surjanovic S, Bingham D. Virtual library of simulation experiments: Test functions and datasets [Internet]. 2023 [cited 2023 Nov 15]. Available from: https://www.sfu.ca/%7Essurjano/index.html. Google Scholar
Taillard E. Benchmarks for basic scheduling problems. European Journal of Operational Research. 1993;64(2):278–285. https://doi.org/10.1016/0377-2217(93)90182-M. DOI: https://doi.org/10.1016/0377-2217(93)90182-M Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Adam Pieprzycki, Bogusław Filipowicz
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.