Characteristics of the oxygen molecule activation process on 3d selected transition metals — DFT calculations
DOI:
https://doi.org/10.55225/sti.494Keywords:
DFT, activation of molecular oxygen, solvated transition metal complexesAbstract
The subject of this research is the characterization of the activation process of the oxygen molecule on solvated selected transition metals (3d). In this study , using the Density Functional Theory, quantum-mechanical calculations were made, the purpose of which was to characterize the electronic structure of water and acetonitrile six-coordinated complexes with general formulas [TM(H2O)6]n+ and [TM(CH3CN)6]n+ and complexes with adsorbed at the metal center with an oxygen molecule ([TM(H2O)5-O2]n+ and [TM(CH3CN)5-O2]n+). The calculations were made using transition metal ions from the fourth period of periodic table: TM = Co2+, Fe2+, Mn2+, Ni2+, Zn2+, Cu2+ and Cr3+. Based on the calculations performed, it was found that each of the parameters analyzed in this work is a function of the introduced transition metal. Moreover, the effect of the transition metal used on the analyzed parameters (e.g. energetics of boundary orbitals, size of the energy gap, charges, etc.) exceeds the effect of the solvent used (H₂O/CH₃CN).
Downloads
References
Radoń M, Drabik G. Spin states and other ligand-field states of aqua complexes revisited with multireference Ab initio calculations including solvation effects. Journal of Chemical Theory and Computation. 2018;14(8):4010–4027. https://doi.org/10.1021/acs.jctc.8b00200. DOI: https://doi.org/10.1021/acs.jctc.8b00200 Google Scholar
Yepes D, Seidel R, Winter B, Blumberger J, Jaque P. Photoemission spectra and density functional theory calculations of 3d transition metal-aqua complexes (Ti-Cu) in aqueous solution. The Journal of Physical Chemistry B. 2014;118(24):6850–6863. https://doi.org/10.1021/jp5012389. DOI: https://doi.org/10.1021/jp5012389 Google Scholar
Yang Y, Ratner MA, Schatz GC. Multireference Ab initio study of ligand field D-d transitions in octahedral transition-metal oxide clusters. The Journal of Physical Chemistry C. 2014;118(50):29196–29208. https://doi.org/10.1021/jp5052672. DOI: https://doi.org/10.1021/jp5052672 Google Scholar
Rotzinger FP. Performance of molecular orbital methods and density functional theory in the computation of geometries and energies of metal aqua ions. The Journal of Physical Chemistry B. 2005;109(4):1510–1527. https://doi.org/10.1021/jp045407v. DOI: https://doi.org/10.1021/jp045407v Google Scholar
Rotzinger FP. Structure of the transition states and intermediates formed in the water-exchange of metal hexaaqua ions of the first transition series. Journal of the American Chemical Society. 1996;118(28):6760–6766. https://doi.org/10.1021/ja960184a. DOI: https://doi.org/10.1021/ja960184a Google Scholar
Ludwig T, Singh AR, Nørskov JK. Acetonitrile transition metal interfaces from first principles. The Journal of Physical Chemistry Letters. 2020;11(22):9802–9811. https://doi.org/10.1021/acs.jpclett.0c02692. DOI: https://doi.org/10.1021/acs.jpclett.0c02692 Google Scholar
Kang Y, Murray CB. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). Journal of the American Chemical Society. 2010;132(22):7568–7569. https://doi.org/10.1021/ja100705j. DOI: https://doi.org/10.1021/ja100705j Google Scholar
Yang H, Zhang J, Sun K, Zou S, Fang J. Enhancing by weakening: Electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew. Chemie - Int. Ed. 2010;49(38):6848–6851. https://doi.org/10.1002/anie.201002888. DOI: https://doi.org/10.1002/anie.201002888 Google Scholar
Xu D, Liu Z, Yang H, Liu Q, Zhang J, Fang J, Zou S, Sun K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angewandte Chemie [International Edition]. 2009;48(23):4217–4221. https://doi.org/10.1002/anie.200900293. DOI: https://doi.org/10.1002/anie.200900293 Google Scholar
Kang Y, Pyo JB, Ye X, Gordon TR, Murray CB. Synthesis, Shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt 3Zn intermetallic nanocrystals. ACS Nano. 2012;6(6):5642–5647. https://doi.org/10.1021/nn301583g. DOI: https://doi.org/10.1021/nn301583g Google Scholar
Baek J, Yun HJ, Yun D, Choi Y, Yi J. Preparation of highly dispersed chromium oxide catalysts supported on mesoporous silica for the oxidative dehydrogenation of propane using CO₂: Insight into the nature of catalytically active chromium sites. ACS Catalysis. 2012;2(9):1893–1903. https://doi.org/10.1021/cs300198u. DOI: https://doi.org/10.1021/cs300198u Google Scholar
Li J, Shi Y, Xu L, Lu G. Selective oxidation of cyclohexane over transition-metal-incorporated hms in a solvent-free system. Industrial & Engineering Chemistry Research. 2010;490(11):5392–5399. https://doi.org/10.1021/ie100092x. DOI: https://doi.org/10.1021/ie100092x Google Scholar
Rajabi F, Pineda A, Naserian S, Balu AM, Luque R, Romero AA. Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates. Green Chemistry. 2013;15(5):1232–1237. https://doi.org/10.1039/c3gc40110c. DOI: https://doi.org/10.1039/c3gc40110c Google Scholar
Pathan S, Patel A. Transition-metal-substituted phosphomolybdates: Catalytic and kinetic study for liquid-phase oxidation of styrene. Industrial & Engineering Chemistry Research. 2013;52(34):11913–11919. https://doi.org/10.1021/ie400797u. DOI: https://doi.org/10.1021/ie400797u Google Scholar
Banerjee D, Jagadeesh RV, Junge K, Pohl MM, Radnik J, Brückner A, Beller M. Convenient and mild epoxidation of alkenes using heterogeneous cobalt oxide catalysts. Angewandte Chemie [International Edition]. 2014;53(17):4359–4363. https://doi.org/10.1002/anie.201310420. DOI: https://doi.org/10.1002/anie.201310420 Google Scholar
Ashouri F, Zare M, Bagherzade M. Manganese and cobalt-terephthalate metal-organic frameworks as a precursor for synthesis of Mn2O3, Mn₃O₄ and Co₃O₄ nanoparticles: Active catalysts for olefin heterogeneous oxidation. Inorganic Chemistry Communications. 2015;61:73–76. https://doi.org/10.1016/j.inoche.2015.08.019. DOI: https://doi.org/10.1016/j.inoche.2015.08.019 Google Scholar
Qiu G, Dharmarathna S, Zhang Y, Opembe N, Huang H, Suib SL. Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. The Journal of Physical Chemistry C. C 2012;116(1):468–477. https://doi.org/10.1021/jp209911k. DOI: https://doi.org/10.1021/jp209911k Google Scholar
Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M. A very simple method to synthesize nano-sized manganese oxide: An efficient catalyst for water oxidation and epoxidation of olefins. Dalton Transactions. 2012;41(36):11026–11031. https://doi.org/10.1039/c2dt30553d. DOI: https://doi.org/10.1039/c2dt30553d Google Scholar
Najafpour MM, Amini M, Sedigh DJ, Rahimi F, Bagherzadeh M. Activated layered manganese oxides with deposited nano-sized gold or silver as an efficient catalyst for epoxidation of olefins. RSC Advances. 2013;3(46):24069–24074. https://doi.org/10.1039/c3ra45004j. DOI: https://doi.org/10.1039/c3ra45004j Google Scholar
Song S, Wu Y, Ge S, Wang L, Wang Y, Guo Y, Zhan W, Guo Y. A Facile way to improve Pt atom efficiency for CO oxidation at low temperature: modification by transition metal oxides. ACS Catalysis. 2019;9(7):6177–6187. https://doi.org/10.1021/acscatal.9b01679. DOI: https://doi.org/10.1021/acscatal.9b01679 Google Scholar
Zhao S, Kang D, Liu Y, Wen Y, Xie X, Yi H, Tang X. Spontaneous formation of asymmetric oxygen vacancies in transition-metal-doped CeO₂ nanorods with improved activity for carbonyl sulfide hydrolysis. ACS Catalysis. 2020;10(20):11739–11750. https://doi.org/10.1021/acscatal.0c02832. DOI: https://doi.org/10.1021/acscatal.0c02832 Google Scholar
Zhang R, Ran T, Cao Y, Zhang Q, Dong F, Yang G, Zhou Y. Surface hydrogen atoms promote oxygen activation for solar light-driven NO oxidization over monolithic Α‑Ni(OH)2/Ni foam. Environmental Science & Technology. 2020;54(24):16221–16230. https://doi.org/10.1021/acs.est.0c05635. DOI: https://doi.org/10.1021/acs.est.0c05635 Google Scholar
Chen Y, Huang Z, Zhou M, Ma Z, Chen J, Tang X. Single silver adatoms on nanostructured manganese oxide surfaces: Boosting oxygen activation for benzene abatement. Environmental Science & Technology. 2017;51(4):2304–2311. https://doi.org/10.1021/acs.est.6b04340. DOI: https://doi.org/10.1021/acs.est.6b04340 Google Scholar
Eisenberg D, Slot TK, Rothenberg G. Understanding oxygen activation on metal- and nitrogen-codoped carbon catalysts. ACS Catalysis. 2018;8(9):8618–8629. https://doi.org/10.1021/acscatal.8b01045. DOI: https://doi.org/10.1021/acscatal.8b01045 Google Scholar
Cramer LA, Liu Y, Deshlahra P, Sykes ECH. Dynamic restructuring induced oxygen activation on AgCu near-surface alloys. The Journal of Physical Chemistry Letters. 2020;11(15):5844–5848. https://doi.org/10.1021/acs.jpclett.0c00887. DOI: https://doi.org/10.1021/acs.jpclett.0c00887 Google Scholar
Liu W, Wang Y, Ai Z, Zhang L. Hydrothermal synthesis of FeS2 as a high-efficiency fenton reagent to degrade alachlor via superoxide-mediated Fe(II)/Fe(III) cycle. ACS Applied Materials & Interfaces. 2015;7(51):28534–28544. https://doi.org/10.1021/acsami.5b09919. DOI: https://doi.org/10.1021/acsami.5b09919 Google Scholar
Turbomole: Program package for electronic structure calculation. Version 7.1. Karlsruhe: Turbomole GmbH. http://www.turbomole.com. Google Scholar
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77(18):3865–3868. doi: https://doi.org/10.1103/ PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865 Google Scholar
Slater JC. The Self-Consistent Field for Molecular and Solids: Quantum Theory of Molecular and Solids. Vol. 4. New York: McGraw-Hill; 1974. Google Scholar
Perdew JP, Wang Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Physical Review B. Condensed Matter 1992;46(20):12947–12954. doi: https://doi.org/10.1103/physrevb.46.12947. DOI: https://doi.org/10.1103/PhysRevB.46.12947 Google Scholar
Schaefer A, Horn H, Ahlrichs R. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. The Journal of Chemical Physics. 1992;97:2571. Google Scholar
Schäfer A, Horn H, Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics. 1992;97(4):2571–2577. https://doi.org/10.1063/1.463096. DOI: https://doi.org/10.1063/1.463096 Google Scholar
Pearson RG. Hard and soft acids and bases. Journal of the American Chemical Society. 1963;85(22):3533–3539. https://doi.org/10.1021/ja00905a001. DOI: https://doi.org/10.1021/ja00905a001 Google Scholar
Pearson RG. Hard and soft acids and bases, HSAB. Part 1: Fundamental principles. Journal of Chemical Education. 1968;45(9):581–586. https://doi.org/10.1021/ed045p581. DOI: https://doi.org/10.1021/ed045p581 Google Scholar
Reed AE, Weinstock RB, Weinhold F. Natural population analysis. The Journal of Chemical Physics. 1985;83(2):735–746. https://doi.org/10.1063/1.449486. DOI: https://doi.org/10.1063/1.449486 Google Scholar
Jensen F. Introduction to Computational Chemistry. Chichester: Wiley; 2016 Google Scholar
Mayer I. Charge, bond order and valence in the AB initio SCF theory. Chemical Physics Letters. 1983;97(3):270–274. https://doi.org/10.1016/0009-2614(83)80005-0. DOI: https://doi.org/10.1016/0009-2614(83)80005-0 Google Scholar
Klamt A, Schüürmann G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society: Perkin Transactions 2. 1993;5:799–805. https://doi.org/10.1039/P29930000799. DOI: https://doi.org/10.1039/P29930000799 Google Scholar
Geneste G, Morillo J, Finocchi F. Adsorption and diffusion of Mg, O, and O₂ on the MgO(001) flat surface. Journal of Chemical Physics. 2005;122(17). https://doi.org/10.1063/1.1886734. DOI: https://doi.org/10.1063/1.1886734 Google Scholar
Freund HJ, Pacchioni G. Oxide Ultra-thin films on metals: New materials for the design of supported metal catalysts. Chemical Society Reviews. 2008;37(10):2224–2242. https://doi.org/10.1039/b718768h. DOI: https://doi.org/10.1039/b718768h Google Scholar
Ge Q, Kose R, King DA. Adsorption energetics and bonding from femtomole calorimetry and from first principles theory. Advances in Catalysis. 2000;45(M):207–259. https://doi.org/10.1016/s0360-0564(02)45015-8. DOI: https://doi.org/10.1016/S0360-0564(02)45015-8 Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Piotr Niemiec, Aleksandra Anioł
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.