The composition operators between Morrey type spaces
DOI:
https://doi.org/10.55225/sti.478Słowa kluczowe:
composition operator, Morrey type space, boundednessAbstrakt
In this paper, we characterize the boundedness of composition operator Cφ from Morrey space H²K₁ to H²K₂ on the unit complex disk.
Statystyka pobrań
Bibliografia
Essén M, Wulan H, Xiao J. Several function-theoretic characterizations of Möbius invariant QK spaces. Journal of Functional Analysis. 2006;230(1):78–115. https://doi.org/10.1016/j.jfa.2005.07.004. DOI: https://doi.org/10.1016/j.jfa.2005.07.004 Google Scholar
Laitila J, Nieminen PJ, Saksman E, Tylli H-O. Compact and weakly compact composition operators on BMOA. Complex Analysis and Operator Theory. 2013;7:163–181. https://doi.org/10.1007/s11785-011-0130-9. DOI: https://doi.org/10.1007/s11785-011-0130-9 Google Scholar
Laitila J. Weighted composition operators on BMOA. Computational Methods and Function Theory. 2009;1:27–46. DOI: https://doi.org/10.1007/BF03321712 Google Scholar
Smith W. Compactness of composition operators on BMOA. Proceedings of the American Mathematical Society. 1999;127(9):2715–2725. DOI: https://doi.org/10.1090/S0002-9939-99-04856-X Google Scholar
Wulan H, Zhou J. QK and Morrey type spaces. Annales Academiae Scientiarum Fennicae. Mathematica. 2013;38:193–207. DOI: https://doi.org/10.5186/aasfm.2013.3801 Google Scholar
Wulan H, Zhu K. QK spaces via higher order derivatives. The Rocky Mountain Journal of Mathematics. 2008;38:329–350. DOI: https://doi.org/10.1216/RMJ-2008-38-1-329 Google Scholar
Xiao J, Xu W. Composition operators between analytic Campanato spaces. The Journal of Geometric Analysis. 2014;24(2):649–666. https://doi.org/10.1007/s12220-012-9349-6. DOI: https://doi.org/10.1007/s12220-012-9349-6 Google Scholar
Zhao R. Distances from Bloch functions to some Möbius invariant spaces. Annales Academiae Scientiarum Fennicae. Mathematica. 2008;33:303–313. Google Scholar
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2023 Jiajia Xu
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.