Positive solutions for nonlinear Robin problems with convection

Autor

  • Leszek Gasiński Państwowa Wyższa Szkoła Zawodowa w Tarnowie, Wydział Matematyczno-Przyrodniczy https://orcid.org/0000-0001-8692-6442
  • Nikolaos S. Papageorgiou Politechnika w Atenach, Katedra Matematyki, Grecja

DOI:

https://doi.org/10.5604/01.3001.0015.2690

Słowa kluczowe:

convection, pseudomonotone operator, strong comparison principle, nonlinear regularity

Abstrakt

We consider a Robin problem driven by the p-Laplacian and with a reaction which is gradient dependent (convection). Using truncations and perturbations, we show that the problem has at least one positive smooth solution.

Statystyka pobrań

Statystyki pobrań nie są jeszcze dostępne

Bai Y. Existence of solutions to nonhomogeneous Dirichlet problems with dependence on the gradient. Electronic Journal of Differential Equations. 2018;101:1–18.   Google Scholar

Bai Y, Gasiński L, Papageorgiou NS. Nonlinear nonhomogeneous Robin problems with dependence on the gradient. Boundary Value Problems. 2018;17,1–24. doi: https://doi.org/10.1186/s13661-018-0936-8.   Google Scholar

Faraci F, Motreanu D, Puglisi D. Positive solutions of quasi-linear elliptic equations with dependence on the gradient. Calculus of Variations and Partial Differential Equations. 2015;54(1):525–538. doi: https://doi.org/10.1007/s00526-014-0793-y.   Google Scholar

Gasiński L, Krech I, Papageorgiou NS. Nonlinear nonhomogeneous Robin problems with gradient dependent reaction. Nonlinear Analysis. Real World Applications. 2020;55:103135. doi: https://doi.org/10.1016/j.nonrwa.2020.103135.   Google Scholar

Gasiński L, Papageorgiou NS. Nonlinear analysis. Boca Raton: Chapman & Hall/CRC; 2006.   Google Scholar

Gasiński L, Papageorgiou NS. Positive solutions for nonlinear elliptic problems with dependence on the gradient. Journal of Differential Equations. 2017;263(2):1451–1476. doi: https://doi.org/10.1016/j.jde.2017.03.021.   Google Scholar

Lieberman GM. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Analysis. Theory, Methods & Applications. 1988:12(11):1203–1219. doi: https://doi.org/10.1016/0362-546X(88)90053-3.   Google Scholar

Papageorgiou NS, Rădulescu VD. Nonlinear nonhomogeneous Robin problems with superlinear reaction term. Advanced Nonlinear Studies. 2016;16(4):737–764. doi: https://doi.org/10.1515/ans-2016-0023.   Google Scholar

Papageorgiou NS, Rădulescu VD. Multiple solutions with precise sign for nonlinear parametric Robin problems. Journal of Differential Equations. 2014;256(7):2449–2479. doi: https://doi.org/10.1016/j.jde.2014.01.010.   Google Scholar

Papageorgiou NS, Rădulescu VD, Repovš DD. Positive solutions for nonlinear nonhomogeneous parametric Robin problems. Forum Mathematicum. 2018;30(3):553––580. doi: https://doi.org/10.1515/forum-2017-0124.   Google Scholar

Papageorgiou NS, Rădulescu VD, Repovš DD. Positive solutions for nonlinear Neumann problems with singular terms and Convection. Journal de Mathématiques Pures et Appliquées. 2020;136:1–21. doi: https://doi.org/10.1016/j.matpur.2020.02.004.   Google Scholar

Zeng S, Papageorgiou NS. Positive solutions for (p, q)-equations with convection and a sign-changing reaction. Advances in Nonlinear Analysis. 2021;11(1):40–57. doi: https://doi.org/10.1515/anona-2020-0176.   Google Scholar

Opublikowane

2021-09-13

Jak cytować

Gasiński, L., & Papageorgiou, N. (2021). Positive solutions for nonlinear Robin problems with convection. Science, Technology and Innovation, 12(1), 26–36. https://doi.org/10.5604/01.3001.0015.2690

Numer

Dział

Artykuły oryginalne

Inne teksty tego samego autora