Analysis of dentistry cements using FTIR spectroscopy
DOI:
https://doi.org/10.5604/01.3001.0014.8103Słowa kluczowe:
FTIR, artificial saliva, dentistry cements, biomaterialsAbstrakt
The aim of this study was to evaluate the influence of artificial saliva on dental materials. Dental cements of various compositions and applications were analyzed. Five types of cements were selected for the study: ionomer glass, carboxylic glass and cements used for temporary fillings: zinc-sulphate cement and cement containing calcium hydroxide.
Dental materials were prepared in accordance with the manufacturer’s instructions. In the first stage, the cements were examined using the transmission technique in the range of 400–4000 cm−1. Dental cements were incubated in saliva at pH 5 for 21 days. After this time, the FTIR spectra for the cements were measured again and placed in artificial saliva. It was found that the FTIR spectra of dentistry cements after contact with artificial saliva differ from those corresponding to the starting materials.
Spectroscopic analysis was also performed on saliva before and after incubating dental cements and materials used as temporary fillings. FTIR results indicate that under these conditions changes occur on the surface of dental materials due to their incubation in artificial saliva. The composition of saliva changes after the incubation of dental materials in it. Urea present in artificial saliva is degraded. Carbonates and phosphates are formed on the surface of dental materials. The disappearance of some bands in the spectra of the cements and their appearance in the spectra of the artificial saliva indicates the transfer of some components from the cements to the artificial saliva. The environment of the artificial saliva affects the dental materials. Analogous changes in the spectra of all tested dental materials are observed. These changes are limited to their area.
Statystyka pobrań
Bibliografia
Haugen HJ, Qasim SB, Matinlinna, JP, Vallittu P, Nogueira LP. Nano-CT as tool characterization of dental resin composites. Scientific Reports. 2020;10(15520). doi: https://doi.org/10.1038/s41598-020-72599-y. Google Scholar
Combe EC. Notes of Dental Materials. London: Pearson Professional Limited; 1992. Google Scholar
Petropoulou A, Dimitriadi M, Zinelis S, Sarafianou A, Eliades G. Surface characteristics and color stability of gingiva-colored resin composites. Materials. 2020;13(11);2540. doi: https://doi.org/10.3390/ma13112540. Google Scholar
Anastasiadis K, Koulaouidou EA, Palaghias G, Eliades G. Bonding of composite to base materials: effects of adhesive treatments on base surface properties and bond strength. The Journal of Adhesive Dentistry. 2018;20(2):151–164. doi: https://doi.org/10.3290/j.jad.a40302. Google Scholar
Paul J. Dental cements – a review to proper selection. International Journal of Current Microbiology and Applied Sciences. 2015;4(2):659–669. Google Scholar
Młyniec M, Gmerek A, Lipski M. Jakich materiałów używa się obecnie do osadzania czasowych uzupełnień protetycznych. Magazyn Stomatologiczny. 2017;7–8:88–89. Google Scholar
Darvell BW. Materials Science for Dentistry. 10th ed. Oxford: Woodhead Publishing; 2018:249–291. Google Scholar
Matinlinna JP, Lassila LVJ, Vallittu PK. Evaluation of five dental silanes on bonding a luting cement onto silica-coated titanium. Journal of Dentistry. 2006;34(9):721–726. doi: https://doi.org/10.1016/j.jdent.2006.01.005. Google Scholar
Matinlinna JP, Lassila LVJ, Vallittu PK. The effect of a novel silane blend system on resin bond strength to silica-coated Ti substrate. Journal of Dentistry. 2006;34(7):436–443. doi: https://doi.org/10.1016/j.jdent.2005.09.007. Google Scholar
Matinlinna JP, Lassila LVJ, Kangasniemi I, Yli-Urpo A, Vallittu PK. Shear bond strength of Bis-GMA resin and methacrylated dendrimer resins on silianized titanium substrate. Dental Materials. 2005;21(3):287–296. doi: https://doi.org/10.1016/j.dental.2004.03.011. Google Scholar
Eliades G, Vougiouklakis G, Palaghias G. Effect of dentin primers on the morphology, molecular composition and collagen conformation of acid-demineralized dentin in situ. Dental Materials. 1999;15(5):310–317. doi: https://doi.org/10.1016/S0109-5641(99)00050-0. Google Scholar
Griggs JA, Wataha JC, Kishen A. Effect of hydrolyzed surface layer on the cytoxicity and chemical resistance of a low fusing porcelain. Dental Materials. 2003;19(7):353–358. doi: https://doi.org/10.1016/S0109-5641(02)00066-0. Google Scholar
Larraz E, Deb S, Elvira C, Román JS. A novel amphiphilic acrylic copolymer based on Triton X-100 for a poly(alkenoate) glass-ionomer cement. Dental Materials. 2006;22(6):506–514. doi: https://doi.org/10.1016/j.dental.2005.06.003. Google Scholar
Mazinis E, Eliades G, Lambrianides T. An FTIR study of the setting reaction of various endodontic sealers. Journal of Endodontics. 2007;33(5):616–620. doi: https://doi.org/10.1016/j.joen.2005.06.001. Google Scholar
Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dental Materials. 2006;22(8):785–791. doi: https://doi.org/10.1016/j.dental.2006.02.009. Google Scholar
Ikemura K, Tay FR, Hironaka T, Endo T, Pashley DH. Bonding mechanism and ultrastructural interfacial analysis of a single-step adhesive to dentin. Dental Materials. 2003;19(8):707–715. doi: https://doi.org/10.1016/S0109-5641(03)00017-4. Google Scholar
Miyazaki M, Onose H, Iida N, Kazama H. Determination of residual double bonds in resin – dentin interface by Raman spectroscopy. Dental Materials. 2003;19(3):245–251. doi: https://doi.org/10.1016/S0109-5641(02)00039-8. Google Scholar
Atai M, Nekoomanesh M, Hashemi SA, Amani S. Physical and mechanical properties of an experimental dental composite based on a new monomer. Dental Materials. 2004;20(7):663–668. doi: https://doi.org/10.1016/j.dental.2003.08.008. Google Scholar
Peez R, Frank S. The physical–mechanical performance of the new Ketac™ Molar Easymix compared to commercially available glass ionomer restoratives. Journal of Dentistry. 2006;34(8):582–587. doi: https://doi.org/10.1016/j.jdent.2004.12.009. Google Scholar
Palin WM, Fleming GJP, Burke FJT, Marquis PM, Randall RC. Monomer conversion versus flexure strength of a novel dental composite. Journal of Dentistry. 2003;31(5):341–351, doi: https://doi.org/10.1016/s0300-5712(03)00050-2. Google Scholar
Oréfice RL, Discacciati JAC, Neves AD, Mansur HS, Jansen WC. Controlling the phase stability of polymer blends through the introduction of impenetrable interfaces. Polymer Testing. 2003;22(1):77–81. Google Scholar
Arcis RW, López-Macipe A, Toledano M, Osorio E, Rodríguez-Clemente R, Murtra J, Fanovich MA, Pascual CD. Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dental Materials. 2002;18(1):49–57. doi: https://doi.org/10.1016/S0109-5641(01)00019-7. Google Scholar
Sakaguchi R, Ferracane J, Powers J. Fundamentals of materials science. In: Sakaguchi R, Ferracane J, Powers J, editors. Craig’s Restorative Dental Materials. 14th ed. St. Louis, Missouri: Elsevier; 2019:29–68. Google Scholar
Yip HK, To WM. An FTIR study of the effects of artificial saliva on the physical characteristics of the glass ionomer cements used for art. Dental Materials. 2005;21(8):695–703. doi: https://doi.org/10.1016/j.dental.2004.09.009. Google Scholar
Yip HK, Guo JH, Wong WHS. Incipient caries lesions on cementum by mono- and co-culture oral bacteria. Journal of Dentistry. 2007;35(5):377–382. doi: https://doi.org/10.1016/j.jdent.2006.11.002. Google Scholar
Ameer MA, Khamis E, Al-Motlaq M. Electrochemical behavior of non-precious dental alloys in bleaching agents. Electrochimica Acta. 2004;50(1):141–148. doi: https://doi.org/10.1016/j.electacta.2004.07.025. Google Scholar
Lee S, Greener EH, Menis DL. Detection of leached moieties from dental composites in fluid simulating food and saliva. Dental Materials. 1995;11(5–6):348–353. doi: https://doi.org/10.1016/0109-5641(95)80033-6. Google Scholar
Li H, Zhou ZR. Wear behaviour of human teeth in dry and artificial saliva conditions. Wear. 2002;249(10–11):980–984. doi: https://doi.org/10.1016/S0043-1648(01)00835-3. Google Scholar
Gadsden JA. Infrared Spectra of Minerals and Related Inorganic Compounds. London: Butterworths; 1975. Google Scholar
Nyquist RA, Kagel RO. Infrared Spectra of Inorganic Compounds (3800–45 cm−1). New York: Academic Press; 1971. Google Scholar
Silverstein RM, Webster FX, Kiemle DJ. Spectrometric Identification of Organic Compounds. New York: John Wiley & Sons, New York; 2007. Google Scholar
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2020 Państwowa Wyższa Szkoła Zawodowa w Tarnowie & Autor
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.