Exploring the generic fallacy — meta path-dependencies in innovation-practices of ‘drone-making’ (eVTOLs)

Authors

DOI:

https://doi.org/10.55225/sti.484

Keywords:

generic technologies, lock-in, meta path-dependency, drones, innovation practices

Abstract

Generic technologies are oftentimes heralded as overall beneficial drivers of innovation, especially regarding their flexibility, low cost of adaption (once established) and their inclusiveness toward a variety of actors. This paper adds to literature on innovation-studies by questioning these promises through the lenses of ‘lock in’ and ‘path dependencies’ and asks how generic approaches to innovation may contribute to a fallacy where increased flexibility is assumed yet implicitly, a sort of ‘lock in genericism’ may occur. The paper argues that, for all the advantages that come with the research and adaption of generic technologies, they also bring with them an increased risk of enamourment with innovations that are applicable to a range of potential applications that, in turn, may lead to more specific technological innovations being at the danger of becoming invisible / unwanted altogether. To investigate this phenomenon further, the paper applies the concept of ‘lock in genericism’ to the field of eVTOL-multicopter- / drone-innovation. In this context, the paper analyzes a series of three case-studies to investigate how this ‘lock-in genericism’ emerges from material, temporal and spatial components of drone-making and subsequently seeks to outline a framework for ‘integrating generic technologies’ in this particular field of application (of drones) to overcome the described lock-in in this field while maintaining their advantages. The paper concludes by discussing the relevance of the concept of ‘lock-in genericism’ on a broader level, highlighting the risk of a ‘generic turn’ in contemporary innovation practices that, in turn, requires critical reflection.

Downloads

Download data is not yet available.

Maine E, Garnsey E. Commercializing generic technology: The case of advanced materials ventures. Research Policy. 2006;35(3):375–393. https://doi.org/10.1016/j.respol.2005.12.006. DOI: https://doi.org/10.1016/j.respol.2005.12.006   Google Scholar

Keenan M. Identifying emerging generic technologies at the national level: The UK experience. Journal of Forecasting. 2003;22(2–3):129–160. https://doi.org/10.1002/for.849. DOI: https://doi.org/10.1002/for.849   Google Scholar

Shinn T. New sources of radical innovation: Research-technologies, transversality and distributed learning in a post-industrial order. Social Science Information. 2005;44(4):731–764. https://doi.org/10.1177/0539018405058218. DOI: https://doi.org/10.1177/0539018405058218   Google Scholar

Vinogradov E, Pollin S. Drone technology: interdisciplinary systematic assessment of knowledge gaps and potential solutions. 2021. https://doi.org/10.48550/arXiv.2110.07532.   Google Scholar

Ruttan VW. General purpose technology, revolutionary technology, and technological maturity. Staff Paper P08-3. Minnesota: University of Minnesota; 2008. Available from: https://ageconsearch.umn.edu/record/6206/.   Google Scholar

Mace R, Hardie G, Place J. Accessible Environments: Toward Universal Design. Raleigh, NC: North Carolina State University: 1991.   Google Scholar

Mace RL. Universal design in housing. Assistive Technology. 1998;10(1):21–28, https://doi.org/ 10.1080/10400435.1998.10131957. DOI: https://doi.org/10.1080/10400435.1998.10131957   Google Scholar

Burgstahler S. Universal design of distance learning. Information Technology and Disability Journal. 2002;8(1). Available from: http://itd.athenpro.org/volume8/number1/burgstah.html.   Google Scholar

Cowan R, Hultén S. Escaping lock-in: The case of the electric vehicle. Technological Forecasting and Social Change. 1996;53(1):61–79. https://doi.org/10.1016/0040-1625(96)00059-5. DOI: https://doi.org/10.1016/0040-1625(96)00059-5   Google Scholar

Ferro CG, Brischetto S, Torre R, Maggiore P. Characterization of ABS specimens produced via the 3D printing technology for drone structural components. Curved and Layered Structures. 2016;3(1):172–188. https://doi.org/10.1515/cls-2016-0014. DOI: https://doi.org/10.1515/cls-2016-0014   Google Scholar

Goh GL, Dikshit V, Koneru R, Peh ZK, Lu W, Guo DG, Yeong WY. Fabrication of design-optimized multifunctional safety cage with conformal circuits for drone using hybrid 3D printing technology. The International Journal of Advanced Manufacturing Technology. 2022;120:2573–2586. https://doi.org/10.1007/s00170-022-08831-y. DOI: https://doi.org/10.1007/s00170-022-08831-y   Google Scholar

Brischetto S, Ciano A, Ferro CG. (2016): A multipurpose modular drone with adjustable arms produced via the FDM additive manufacturing process. Curved and Layered Structures. 2016;3(1):202–213. https://doi.org/10.1515/cls-2016-0016. DOI: https://doi.org/10.1515/cls-2016-0016   Google Scholar

Muralidharan N, Pratheep VG, Shanmugam A, Hariram A, Dinesh P, Visnu B. Structural analysis of mini drone developed using 3D printing technique. Materials Today: Proceedings. 2021;46(Part 17):8748–8752. https://doi.org/10.1016/j.matpr.2021.04.053. DOI: https://doi.org/10.1016/j.matpr.2021.04.053   Google Scholar

Cantner U, Vannuccini S. Innovation and lock-in. Jena Economic Research Papers. 2016-018. DOI: https://doi.org/10.4337/9781782548522.00018   Google Scholar

Page SE. Path dependence. Quarterly Journal of Political Science. 2006;1(1):87–115. http://dx.doi.org/10.1561/ DOI: https://doi.org/10.1561/100.00000006   Google Scholar

00000006.   Google Scholar

Cowan R. (1990): Nuclear power reactors: A study in technological lock-in. The Journal of Economic History. 1990;50(3):541–567. Available from: https://www.jstor.org/stable/2122817. DOI: https://doi.org/10.1017/S0022050700037153   Google Scholar

Gallagher S. The complementary role of dominant designs and industry standards. IEEE Transactions on Engineering Management. 2007;54(2):371–379. https://doi.org/10.1109/TEM.2007.893991. DOI: https://doi.org/10.1109/TEM.2007.893991   Google Scholar

Charmaz K. Constructing Grounded Theory: A Practical Guide Through Qualitative Analysis. Repr. Los Angeles: Sage; 2012.   Google Scholar

Bryant A. Re-grounding grounded theory. The Journal of Information Technology Theory and Application. 2002;4(1):25–42. Available from: https://aisel.aisnet.org/jitta/vol4/iss1/7.   Google Scholar

Schot J, Rip A. The past and future of constructive technology assessment. Technological Forecasting and Social Change. 1997;54(2–3):251–268. https://doi.org/10.1016/S0040-1625(96)00180-1. DOI: https://doi.org/10.1016/S0040-1625(96)00180-1   Google Scholar

Guston DH, Sarewitz D. Real-time technology assessment. Technology in Society. 2002;24(1–2):93–109. https://doi.org/10.1016/S0160-791X(01)00047-1. DOI: https://doi.org/10.1016/S0160-791X(01)00047-1   Google Scholar

Schmidt R, Wiesse B. Online participant videos: A new type of data for interpretative social research? Forum: Qualitative Social Research. 2019;20(2). https://doi.org/10.17169/fqs-20.2.3187.   Google Scholar

Tuma R. Videoprofis im Alltag. Wiesbaden: Springer Fachmedien Wiesbaden; 2017. DOI: https://doi.org/10.1007/978-3-658-15166-9   Google Scholar

Tuma R, Schnettler B. Videographie. In: Baur N, Blasius J, editors. Handbuch der empirischen Sozialforschung. Wiesbaden: Springer; 2019. DOI: https://doi.org/10.1007/978-3-658-21308-4_86   Google Scholar

Redmon D. Video Ethnography: Theory, methods, and ethics. London: Routledge; 2019. DOI: https://doi.org/10.4324/9780429056321   Google Scholar

Weller K, Holaschke M. Whose stream is this anyway? Exploring layers of viewer-integration in online participatory videos. Journal of Media and Communication Studies. 2022;14(1):17–32. https://doi.org/10.5897/JMCS2021.0760. DOI: https://doi.org/10.5897/JMCS2021.0760   Google Scholar

Lee J. Optimization of a modular drone delivery system. In: 2017 Annual IEEE International Systems Conference (SysCon). Piscataway: IEEE; 2017:1–8. https://doi.org/10.1109/SYSCON.2017.7934790. DOI: https://doi.org/10.1109/SYSCON.2017.7934790   Google Scholar

da Silva Ferreira MA, Tejada Begazo MF, Cano Lopes G, de Oliveira AF, Colombini EL, da Silva Simões A. Drone Reconfigurable Architecture (DRA): A multipurpose modular architecture for Unmanned Aerial Vehicles (UAVs). Journal of Intelligent and Robotic Systems. 2020;99(3–4):517–534. https://doi.org/10.1007/s10846-019-01129-4. DOI: https://doi.org/10.1007/s10846-019-01129-4   Google Scholar

Kaufmann E, Loquercio A, Ranftl R, Müller M, Koltun V, Scaramuzza D. Deep drone acrobatics. Robotics: Science and Systems. 2020. Available from: https://www.roboticsproceedings.org/rss16/p040.pdf. DOI: https://doi.org/10.15607/RSS.2020.XVI.040   Google Scholar

Foehn P, Brescianini D, Kaufmann E, Cieslewski T, Gehrig M, Muglikar M, Scaramuzza D. AlphaPilot: Autonomous drone racing. Autonomous Robots; 2022;46(1):307–320. https://doi.org/10.1007/s10514-021-10011-y. DOI: https://doi.org/10.1007/s10514-021-10011-y   Google Scholar

Wajcman J. Life in the fast lane? Towards a sociology of technology and time. The British Journal of Sociology. 2008;59(1):59–77. https://doi.org/10.1111/j.1468-4446.2007.00182.x. DOI: https://doi.org/10.1111/j.1468-4446.2007.00182.x   Google Scholar

Briscoe G, Mulligan C. Digital Innovation: The Hackathon Phenomenon. CreativeWorks London. Working Paper No. 6. London; 2014.   Google Scholar

Guttenberger M, Vatter P. Innovate like Start-ups – Das Innovationsformat Makeathon als Basis für die Entwicklung disruptiver Innovationen. In: Dahm M, Thode S, editors. Digitale Transformation in der Unternehmenspraxis. Wiesbaden: Springer Gabler; 2020. DOI: https://doi.org/10.1007/978-3-658-28557-9_19   Google Scholar

Maskell B. The age of agile manufacturing. Supply Chain Management. 2001;6(1):5–11. https://doi.org/10.1108/13598540110380868. DOI: https://doi.org/10.1108/13598540110380868   Google Scholar

Böhmer A, Beckmann A, Lindemann U. Open innovation ecosystem – makerspaces within an agile innovation process. In: ISPIM Innovation Symposium. Manchester: The International Society for Professional Innovation Management (ISPIM); 2015.   Google Scholar

Benarbia T, Kyandoghere K. A literature review of drone-based package delivery logistics systems and their implementation feasibility. Sustainability. 2022;14(1):360. https://doi.org/10.3390/su14010360. DOI: https://doi.org/10.3390/su14010360   Google Scholar

Woodward MA, Sitti M. MultiMo-Bat: A biologically inspired integrated jumping-gliding robot. The International Journal of Robotics Research. 2014;33(12):1511–1529. https://doi.org/10.1177/027836491454130. DOI: https://doi.org/10.1177/0278364914541301   Google Scholar

Zufferey R, Ortega Ancel A, Farinha A, Siddall R, Armanini SF, Nasr M, Brahmal RV, Kennedy G, Kovac M. Consecutive aquatic jump-gliding with water-reactive fuel. Science Robotics. 2019;4(34). https://doi.org/10.1126/scirobotics.aax7330. DOI: https://doi.org/10.1126/scirobotics.aax7330   Google Scholar

Figure 7. Map of contemporary building blocks of eVTOL  multicopter

Downloads

Published

2023-09-15

How to Cite

Weller, K. (2023). Exploring the generic fallacy — meta path-dependencies in innovation-practices of ‘drone-making’ (eVTOLs). Science, Technology and Innovation, 18(3-4), 15–29. https://doi.org/10.55225/sti.484

Issue

Section

Original articles