On certain weighted Schur type inequalities
DOI:
https://doi.org/10.55225/sti.463Keywords:
Schur type inequality, Markov type inequality, real polynomialsAbstract
In this note we give sharp Schur type inequalities for univariate polynomials with convex weights. Our approach will rely on application of two-dimensional Markov type inequalities, and also certain properties of Jacobi polynomials in order to prove sharpness.
Downloads
References
Baran M. Markov inequality on sets with polynomial parametrization. Annales Polonici Mathematici. 1994;60(1):69–79. DOI: https://doi.org/10.4064/ap-60-1-69-79 Google Scholar
Baran M, Białas-Cież L. On the behaviour of constants in some polynomial inequalities. Annales Polonici Mathematici. 2019;123:43–60. https://doi.org/10.4064/ap180803-23-4. DOI: https://doi.org/10.4064/ap180803-23-4 Google Scholar
Beberok T. Lp Markov exponent of certain UPC sets. Zeitschrift fur Analysis und ihre Anwendungen. 2022;41(1/2):153–166. https://doi.org/10.4171/ZAA/1700. DOI: https://doi.org/10.4171/ZAA/1700 Google Scholar
Białas-Cież L, Calvi J-P, Kowalska A. Polynomial inequalities on certain algebraic hypersurfaces. Journal of Mathematical Analysis and Applications. 2018;459(2):822–838. https://doi.org/10.1016/j.jmaa.2017.11.010. DOI: https://doi.org/10.1016/j.jmaa.2017.11.010 Google Scholar
Białas-Cież L, Calvi J-P, Kowalska A. Markov and division inequalities on algebraic sets [preprint]. 2022;7. Google Scholar
Białas-Cież L, Sroka G. Polynomial inequalities in Lp norms with generalized Jacobi weights. Mathematical Inequalities and Applications. 2019;22(1):261–274. https://dx.doi.org/10.7153/mia-2019-22-20. DOI: https://doi.org/10.7153/mia-2019-22-20 Google Scholar
Borwein P, Erdélyi T. Polynomials and Polynomial Inequalities. New York, NY: Springer; 1995. https://doi.org/10.1007/978-1-4612-0793-1. DOI: https://doi.org/10.1007/978-1-4612-0793-1 Google Scholar
Erdélyi T. Remez-type inequalities and their applications. Journal of Computational and Applied Mathematics. 1993;47(2):167–209. DOI: https://doi.org/10.1016/0377-0427(93)90003-T Google Scholar
Joung H. Weighted inequalities for generalized polynomials with doubling weights. Journal of Inequalities and Applications. 2017:91. https://doi.org/10.1186/s13660-017-1369-0. DOI: https://doi.org/10.1186/s13660-017-1369-0 Google Scholar
Kroó A. Schur type inequalities for multivariate polynomials on convex bodies. Dolomites Research Notes on Approximation. 2017;10:15–22. Google Scholar
Kroó A. Sharp Lp Markov type inequality for cuspidal domains in ℝd. Journal of Approximation Theory. 2020;250:105336. https://doi.org/10.1016/j.jat.2019.105336. DOI: https://doi.org/10.1016/j.jat.2019.105336 Google Scholar
Milovanović GV, Mitrinović DS, Rassias TM. Topics in Polynomials: Extremal Problems, Inequalities, Zeros. Singapore: World Scientic; 1994. https://doi.org/10.1142/1284. DOI: https://doi.org/10.1142/1284 Google Scholar
Pierzchała R. Polynomial inequalities, o-minimality and Denjoy-Carleman classes. Advances in Mathematics. 2022;407:108565. https://doi.org/10.1016/j.aim.2022.108565. DOI: https://doi.org/10.1016/j.aim.2022.108565 Google Scholar
Révész SG. Schur-Type inequalities for complex polynomials with no zeros in the unit disk. Journal of Inequalities and Applications. 2007:090526. https://doi.org/10.1155/2007/90526. DOI: https://doi.org/10.1155/2007/90526 Google Scholar
Szegö G. Orthogonal Polynomials. Providence: American Mathematical Society; 1975. Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tomasz Beberok
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.