Exploring the generic fallacy — meta path-dependencies in innovation-practices of ‘drone-making’ (eVTOLs)
DOI:
https://doi.org/10.55225/sti.484Keywords:
generic technologies, lock-in, meta path-dependency, drones, innovation practicesAbstract
Generic technologies are oftentimes heralded as overall beneficial drivers of innovation, especially regarding their flexibility, low cost of adaption (once established) and their inclusiveness toward a variety of actors. This paper adds to literature on innovation-studies by questioning these promises through the lenses of ‘lock in’ and ‘path dependencies’ and asks how generic approaches to innovation may contribute to a fallacy where increased flexibility is assumed yet implicitly, a sort of ‘lock in genericism’ may occur. The paper argues that, for all the advantages that come with the research and adaption of generic technologies, they also bring with them an increased risk of enamourment with innovations that are applicable to a range of potential applications that, in turn, may lead to more specific technological innovations being at the danger of becoming invisible / unwanted altogether. To investigate this phenomenon further, the paper applies the concept of ‘lock in genericism’ to the field of eVTOL-multicopter- / drone-innovation. In this context, the paper analyzes a series of three case-studies to investigate how this ‘lock-in genericism’ emerges from material, temporal and spatial components of drone-making and subsequently seeks to outline a framework for ‘integrating generic technologies’ in this particular field of application (of drones) to overcome the described lock-in in this field while maintaining their advantages. The paper concludes by discussing the relevance of the concept of ‘lock-in genericism’ on a broader level, highlighting the risk of a ‘generic turn’ in contemporary innovation practices that, in turn, requires critical reflection.
Downloads
References
Maine E, Garnsey E. Commercializing generic technology: The case of advanced materials ventures. Research Policy. 2006;35(3):375–393. https://doi.org/10.1016/j.respol.2005.12.006. DOI: https://doi.org/10.1016/j.respol.2005.12.006 Google Scholar
Keenan M. Identifying emerging generic technologies at the national level: The UK experience. Journal of Forecasting. 2003;22(2–3):129–160. https://doi.org/10.1002/for.849. DOI: https://doi.org/10.1002/for.849 Google Scholar
Shinn T. New sources of radical innovation: Research-technologies, transversality and distributed learning in a post-industrial order. Social Science Information. 2005;44(4):731–764. https://doi.org/10.1177/0539018405058218. DOI: https://doi.org/10.1177/0539018405058218 Google Scholar
Vinogradov E, Pollin S. Drone technology: interdisciplinary systematic assessment of knowledge gaps and potential solutions. 2021. https://doi.org/10.48550/arXiv.2110.07532. Google Scholar
Ruttan VW. General purpose technology, revolutionary technology, and technological maturity. Staff Paper P08-3. Minnesota: University of Minnesota; 2008. Available from: https://ageconsearch.umn.edu/record/6206/. Google Scholar
Mace R, Hardie G, Place J. Accessible Environments: Toward Universal Design. Raleigh, NC: North Carolina State University: 1991. Google Scholar
Mace RL. Universal design in housing. Assistive Technology. 1998;10(1):21–28, https://doi.org/ 10.1080/10400435.1998.10131957. DOI: https://doi.org/10.1080/10400435.1998.10131957 Google Scholar
Burgstahler S. Universal design of distance learning. Information Technology and Disability Journal. 2002;8(1). Available from: http://itd.athenpro.org/volume8/number1/burgstah.html. Google Scholar
Cowan R, Hultén S. Escaping lock-in: The case of the electric vehicle. Technological Forecasting and Social Change. 1996;53(1):61–79. https://doi.org/10.1016/0040-1625(96)00059-5. DOI: https://doi.org/10.1016/0040-1625(96)00059-5 Google Scholar
Ferro CG, Brischetto S, Torre R, Maggiore P. Characterization of ABS specimens produced via the 3D printing technology for drone structural components. Curved and Layered Structures. 2016;3(1):172–188. https://doi.org/10.1515/cls-2016-0014. DOI: https://doi.org/10.1515/cls-2016-0014 Google Scholar
Goh GL, Dikshit V, Koneru R, Peh ZK, Lu W, Guo DG, Yeong WY. Fabrication of design-optimized multifunctional safety cage with conformal circuits for drone using hybrid 3D printing technology. The International Journal of Advanced Manufacturing Technology. 2022;120:2573–2586. https://doi.org/10.1007/s00170-022-08831-y. DOI: https://doi.org/10.1007/s00170-022-08831-y Google Scholar
Brischetto S, Ciano A, Ferro CG. (2016): A multipurpose modular drone with adjustable arms produced via the FDM additive manufacturing process. Curved and Layered Structures. 2016;3(1):202–213. https://doi.org/10.1515/cls-2016-0016. DOI: https://doi.org/10.1515/cls-2016-0016 Google Scholar
Muralidharan N, Pratheep VG, Shanmugam A, Hariram A, Dinesh P, Visnu B. Structural analysis of mini drone developed using 3D printing technique. Materials Today: Proceedings. 2021;46(Part 17):8748–8752. https://doi.org/10.1016/j.matpr.2021.04.053. DOI: https://doi.org/10.1016/j.matpr.2021.04.053 Google Scholar
Cantner U, Vannuccini S. Innovation and lock-in. Jena Economic Research Papers. 2016-018. DOI: https://doi.org/10.4337/9781782548522.00018 Google Scholar
Page SE. Path dependence. Quarterly Journal of Political Science. 2006;1(1):87–115. http://dx.doi.org/10.1561/ DOI: https://doi.org/10.1561/100.00000006 Google Scholar
00000006. Google Scholar
Cowan R. (1990): Nuclear power reactors: A study in technological lock-in. The Journal of Economic History. 1990;50(3):541–567. Available from: https://www.jstor.org/stable/2122817. DOI: https://doi.org/10.1017/S0022050700037153 Google Scholar
Gallagher S. The complementary role of dominant designs and industry standards. IEEE Transactions on Engineering Management. 2007;54(2):371–379. https://doi.org/10.1109/TEM.2007.893991. DOI: https://doi.org/10.1109/TEM.2007.893991 Google Scholar
Charmaz K. Constructing Grounded Theory: A Practical Guide Through Qualitative Analysis. Repr. Los Angeles: Sage; 2012. Google Scholar
Bryant A. Re-grounding grounded theory. The Journal of Information Technology Theory and Application. 2002;4(1):25–42. Available from: https://aisel.aisnet.org/jitta/vol4/iss1/7. Google Scholar
Schot J, Rip A. The past and future of constructive technology assessment. Technological Forecasting and Social Change. 1997;54(2–3):251–268. https://doi.org/10.1016/S0040-1625(96)00180-1. DOI: https://doi.org/10.1016/S0040-1625(96)00180-1 Google Scholar
Guston DH, Sarewitz D. Real-time technology assessment. Technology in Society. 2002;24(1–2):93–109. https://doi.org/10.1016/S0160-791X(01)00047-1. DOI: https://doi.org/10.1016/S0160-791X(01)00047-1 Google Scholar
Schmidt R, Wiesse B. Online participant videos: A new type of data for interpretative social research? Forum: Qualitative Social Research. 2019;20(2). https://doi.org/10.17169/fqs-20.2.3187. Google Scholar
Tuma R. Videoprofis im Alltag. Wiesbaden: Springer Fachmedien Wiesbaden; 2017. DOI: https://doi.org/10.1007/978-3-658-15166-9 Google Scholar
Tuma R, Schnettler B. Videographie. In: Baur N, Blasius J, editors. Handbuch der empirischen Sozialforschung. Wiesbaden: Springer; 2019. DOI: https://doi.org/10.1007/978-3-658-21308-4_86 Google Scholar
Redmon D. Video Ethnography: Theory, methods, and ethics. London: Routledge; 2019. DOI: https://doi.org/10.4324/9780429056321 Google Scholar
Weller K, Holaschke M. Whose stream is this anyway? Exploring layers of viewer-integration in online participatory videos. Journal of Media and Communication Studies. 2022;14(1):17–32. https://doi.org/10.5897/JMCS2021.0760. DOI: https://doi.org/10.5897/JMCS2021.0760 Google Scholar
Lee J. Optimization of a modular drone delivery system. In: 2017 Annual IEEE International Systems Conference (SysCon). Piscataway: IEEE; 2017:1–8. https://doi.org/10.1109/SYSCON.2017.7934790. DOI: https://doi.org/10.1109/SYSCON.2017.7934790 Google Scholar
da Silva Ferreira MA, Tejada Begazo MF, Cano Lopes G, de Oliveira AF, Colombini EL, da Silva Simões A. Drone Reconfigurable Architecture (DRA): A multipurpose modular architecture for Unmanned Aerial Vehicles (UAVs). Journal of Intelligent and Robotic Systems. 2020;99(3–4):517–534. https://doi.org/10.1007/s10846-019-01129-4. DOI: https://doi.org/10.1007/s10846-019-01129-4 Google Scholar
Kaufmann E, Loquercio A, Ranftl R, Müller M, Koltun V, Scaramuzza D. Deep drone acrobatics. Robotics: Science and Systems. 2020. Available from: https://www.roboticsproceedings.org/rss16/p040.pdf. DOI: https://doi.org/10.15607/RSS.2020.XVI.040 Google Scholar
Foehn P, Brescianini D, Kaufmann E, Cieslewski T, Gehrig M, Muglikar M, Scaramuzza D. AlphaPilot: Autonomous drone racing. Autonomous Robots; 2022;46(1):307–320. https://doi.org/10.1007/s10514-021-10011-y. DOI: https://doi.org/10.1007/s10514-021-10011-y Google Scholar
Wajcman J. Life in the fast lane? Towards a sociology of technology and time. The British Journal of Sociology. 2008;59(1):59–77. https://doi.org/10.1111/j.1468-4446.2007.00182.x. DOI: https://doi.org/10.1111/j.1468-4446.2007.00182.x Google Scholar
Briscoe G, Mulligan C. Digital Innovation: The Hackathon Phenomenon. CreativeWorks London. Working Paper No. 6. London; 2014. Google Scholar
Guttenberger M, Vatter P. Innovate like Start-ups – Das Innovationsformat Makeathon als Basis für die Entwicklung disruptiver Innovationen. In: Dahm M, Thode S, editors. Digitale Transformation in der Unternehmenspraxis. Wiesbaden: Springer Gabler; 2020. DOI: https://doi.org/10.1007/978-3-658-28557-9_19 Google Scholar
Maskell B. The age of agile manufacturing. Supply Chain Management. 2001;6(1):5–11. https://doi.org/10.1108/13598540110380868. DOI: https://doi.org/10.1108/13598540110380868 Google Scholar
Böhmer A, Beckmann A, Lindemann U. Open innovation ecosystem – makerspaces within an agile innovation process. In: ISPIM Innovation Symposium. Manchester: The International Society for Professional Innovation Management (ISPIM); 2015. Google Scholar
Benarbia T, Kyandoghere K. A literature review of drone-based package delivery logistics systems and their implementation feasibility. Sustainability. 2022;14(1):360. https://doi.org/10.3390/su14010360. DOI: https://doi.org/10.3390/su14010360 Google Scholar
Woodward MA, Sitti M. MultiMo-Bat: A biologically inspired integrated jumping-gliding robot. The International Journal of Robotics Research. 2014;33(12):1511–1529. https://doi.org/10.1177/027836491454130. DOI: https://doi.org/10.1177/0278364914541301 Google Scholar
Zufferey R, Ortega Ancel A, Farinha A, Siddall R, Armanini SF, Nasr M, Brahmal RV, Kennedy G, Kovac M. Consecutive aquatic jump-gliding with water-reactive fuel. Science Robotics. 2019;4(34). https://doi.org/10.1126/scirobotics.aax7330. DOI: https://doi.org/10.1126/scirobotics.aax7330 Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kevin Weller
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.