Rola BCG w zapobieganiu gruźlicy i strategie prowadzące do zwiększenia jej immunogenności
DOI:
https://doi.org/10.5604/01.3001.0012.1373Słowa kluczowe:
gruźlica, szczepionka, BCG, Mycobacterium tuberculosisAbstrakt
Gruźlica pozostaje ważnym problemem zdrowia publicznego i jest główną przyczyną zgonów z powodu chorób zakaźnych na całym świecie. Mycobacterium tuberculosis (Mtb), bakteria wywołująca gruźlicę, jest najstarszym znanym ludzkim patogenem. Jedyną dostępną szczepionkę przeciwgruźliczą, BCG, po raz pierwszy zastosowano już w 1921 r. i od tego czasu pozostaje ona jedynym narzędziem zapobiegającym gruźlicy. Jej skuteczność jest jednak ograniczona i istnieje pilna potrzeba zaprojektowania i wyprodukowania nowej szczepionki, która chroni przed tą śmiercionośną chorobą, szczególnie w dobie pojawiających się problemów z antybiotykoopornością Mtb. W niniejszej pracy przeglądowej opisano aktualną, globalną sytuację epidemiologiczną dotyczącą gruźlicy i przedstawiono charakterystykę BCG. Opisano także strategie prowadzące do wytworzenia wariantów BCG zapewniających lepszą ochronę przeciwgruźliczą.
Statystyka pobrań
Bibliografia
Koch R. (1882). Die Aetiologie der Tuberkulose, Berl. Klin. Wochenschr, 19, 221–230. Google Scholar
Comas, I., Coscolla, M., Luo, T., Borrell, S., Holt, K. E., Kato-Maeda, M., ... & Yeboah-Manu, D. (2013). Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature genetics, 45(10), 1176. Google Scholar
WHO, Global tuberculosis report 2017., World Health Organization, Global tuberculosis report 2017. Geneva, Switzerland, 2017. Google Scholar
Tuberculosis surveillance and monitoring in Europe Centre for Disease Prevention and Control/WHO Regional Office for Europe., Stockholm: European Centre for Disease Prevention and Control, 2015. Google Scholar
Getahun, H., Matteelli, A., Abubakar, I., Aziz, M. A., Baddeley, A., Barreira, D., ... & Cavalcante, S. (2015). Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. European Respiratory Journal, 1563–1576. Google Scholar
Russell, D. G., Barry, C. E., & Flynn, J. L. (2010). Tuberculosis: what we don’t know can, and does, hurt us. Science, 328(5980), 852–856. Google Scholar
Lange, C., Chesov, D., Heyckendorf, J., Leung, C. C., Udwadia, Z., & Dheda, K. (2018). Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment. Respirology. Google Scholar
Nieuwenhuizen, N.E., Kaufmann, S.H.E. (2018). Next-Generation Vaccines Based on Bacille Calmette-Guerin, Front Immunol, 9, 121. Google Scholar
Kaufmann, S. H., Weiner, J., & von Reyn, C. F. (2017). Novel approaches to tuberculosis vaccine development. International Journal of Infectious Diseases, 56, 263–267. Google Scholar
Brosch, R., Gordon, S. V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., … & Parsons, L. M. (2002). A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proceedings of the national academy of Sciences, 99(6), 3684–3689. Google Scholar
Ganguly, N., Siddiqui, I., & Sharma, P. (2008). Role of M. tuberculosis RD-1 region encoded secretory proteins in protective response and virulence. Tuberculosis, 88(6), 510–517. Google Scholar
Pym, A. S., Brodin, P., Brosch, R., Huerre, M., & Cole, S. T. (2002). Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Molecular microbiology, 46(3), 709–717. Google Scholar
Fine, P. E. (1995). Variation in protection by BCG: implications of and for heterologous immunity. The Lancet, 346(8986), 1339–1345. Google Scholar
Adinarayanan, S., Culp, R. K., Subramani, R., Abbas, K. M., Radhakrishna, S., & Swaminathan, S. (2017). Role of bacille Calmette-Guérin in preventing tuberculous infection. The International Journal of Tuberculosis and Lung Disease, 21(4), 420–424. Google Scholar
Hart, P. D. A., & Sutherland, I. (1977). BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br Med J, 2(6082), 293–295. Google Scholar
Rodrigues, L. C., Diwan, V. K., & Wheeler, J. G. (1993). Protective effect of BCG against tuberculous meningitis and miliary tuberculosis: a meta-analysis. International journal of epidemiology, 22(6), 1154–1158. Google Scholar
Trunz, B. B., Fine, P. E. M., & Dye, C. (2006). Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. The Lancet, 367(9517), 1173–1180. Google Scholar
WHO, BCG vaccine: WHO position paper, February 2018 – Recommendations, Vaccine, (2018). Google Scholar
Zwerling, A., Behr, M. A., Verma, A., Brewer, T. F., Menzies, D., & Pai, M. (2011). The BCG World Atlas: a database of global BCG vaccination policies and practices. PLoS medicine, 8(3), e1001012. Google Scholar
Kleinnijenhuis, J., Quintin, J., Preijers, F., Benn, C. S., Joosten, L. A., Jacobs, C., ... & Van Crevel, R. (2014). Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. Journal of innate immunity, 6(2), 152–158. Google Scholar
Garly, M. L., Martins, C. L., Balé, C., Baldé, M. A., Hedegaard, K. L., Gustafson, P., ... & Aaby, P. (2003). BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa: a non-specific beneficial effect of BCG?. Vaccine, 21(21–22), 2782–2790. Google Scholar
Quan, Y., Jeong, C. W., Kwak, C., Kim, H. H., Kim, H. S., & Ku, J. H. (2017). Dose, duration and strain of bacillus Calmette–Guerin in the treatment of nonmuscle invasive bladder cancer: Meta-analysis of randomized clinical trials. Medicine, 96(42). Google Scholar
Kates, M., Nirschl, T., Sopko, N., Hahn, N., McConkey, D., Baras, A., ... & Bivalacqua, T. (2017). Intravesical BCG induces CD4 T Cell expansion in an immune competent model of bladder cancer, Cancer Immunol Res, 5 (2017) 594–603. Google Scholar
Ratliff, T. L., Ritchey, J. K., Yuan, J. J., Andriole, G. L., & Catalona, W. J. (1993). T-cell subsets required for intravesical BCG immunotherapy for bladder cancer. The Journal of urology, 150(3), 1018–1023. Google Scholar
Bisetto, L. H. L., & Ciosak, S. I. (2017). Analysis of adverse events following immunization caused by immunization errors. Revista brasileira de enfermagem, 70(1), 87–95. Google Scholar
Amanati, A., Pouladfar, G., Kadivar, M. R., Dashti, A. S., Jafarpour, Z., Haghpanah, S., & Alborzi, A. (2017). A 25-year surveillance of disseminated Bacillus Calmette–Guérin disease treatment in children in Southern Iran. Medicine, 96(52), e9035. Google Scholar
Liaw, F., Tan, Y. Y., & Hendry, D. (2017). Systemic BCGosis following intravesical BCG instillation for bladder carcinoma. Clinical case reports, 5(10), 1569–1572. Google Scholar
Lukacs, S., Tschobotko, B., Szabo, N. A., & Symes, A. (2013). Systemic BCG-osis as a rare side effect of intravesical BCG treatment for superficial bladder cancer. Case reports in urology, 2013, 821526. Google Scholar
Rowland, R., & McShane, H. (2011). Tuberculosis vaccines in clinical trials. Expert review of vaccines, 10(5), 645–658. Google Scholar
Voss, G., Casimiro, D., Neyrolles, O., Williams, A., Kaufmann, S. H., McShane, H., ... & Fletcher, H. A. (2018). Progress and challenges in TB vaccine development. F1000Research, 7, 199. Google Scholar
Cardona, P. J., & Williams, A. (2017). Experimental animal modelling for TB vaccine development. International Journal of Infectious Diseases, 56, 268–273. Google Scholar
McShane, H., & Williams, A. (2014). A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis, 94(2), 105–110. Google Scholar
Layre, E., Mazurek, J., Gilleron, M. (2016). Glycolipid Presentation by CD1, eLS, Encyclopedia of Life Sciences 2016. Google Scholar
Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S., & Small, P. M. (1999). Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science, 284(5419), 1520–1523. Google Scholar
Dey, B., Jain, R., Khera, A., Rao, V., Dhar, N., Gupta, U. D., ... & Tyagi, A. K. (2009). Boosting with a DNA vaccine expressing ESAT-6 (DNAE6) obliterates the protection imparted by recombinant BCG (rBCGE6) against aerosol Mycobacterium tuberculosis infection in guinea pigs. Vaccine, 28(1), 63–70. Google Scholar
Johansen, P., Fettelschoss, A., Amstutz, B., Selchow, P., Waeckerle-Men, Y., Keller, P., … & Sander, P. (2011). Relief from Zmp1-mediated arrest of phagosome maturation is associated with facilitated presentation and enhanced immunogenicity of mycobacterial antigens. Clinical and Vaccine Immunology, 18(6), 907–913. Google Scholar
Khatri, B., Whelan, A., Clifford, D., Petrera, A., Sander, P., & Vordermeier, H. M. (2014). BCG Δzmp1 vaccine induces enhanced antigen specific immune responses in cattle. Vaccine, 32(7), 779–784. Google Scholar
Nascimento, I. P., Rodriguez, D., Santos, C. C., Amaral, E. P., Rofatto, H. K., Junqueira-Kipnis, A. P., ... & Winter, N. (2017). Recombinant BCG Expressing LTAK63 Adjuvant induces Superior Protection against Mycobacterium tuberculosis. Scientific reports, 7(1), 2109. Google Scholar
Gonzalo-Asensio, J., Marinova, D., Martin, C., & Aguilo, N. (2017). MTBVAC: Attenuating the human pathogen of tuberculosis towards a promising vaccine against the TB epidemic. Frontiers in immunology, 8, 1803. Google Scholar
Lahey, T., Laddy, D., Hill, K., Schaeffer, J., Hogg, A., Keeble, J., ... & von Reyn, C. F. (2016). Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PloS one, 11(12), e0168521. Google Scholar
von Reyn, C. F., Lahey, T., Arbeit, R. D., Landry, B., Kailani, L., Adams, L. V., ... & Tvaroha, S. (2017). Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: A randomized, controlled trial of DAR-901. PloS one, 12(5), e0175215. Google Scholar
Tameris, M. D., Hatherill, M., Landry, B. S., Scriba, T. J., Snowden, M. A., Lockhart, S., ... & Mahomed, H. (2013). Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. The Lancet, 381(9871), 1021–1028. Google Scholar
Nemes, E., Hesseling, A. C., Tameris, M., Mauff, K., Downing, K., Mulenga, H., ... & Hanekom, W. A. (2017). Safety and Immunogenicity of Newborn MVA85A Vaccination and Selective, Delayed Bacille Calmette-Guerin for Infants of Human Immunodeficiency Virus-Infected Mothers: A Phase 2 Randomized, Controlled Trial. Clinical Infectious Diseases, 66(4), 554–563. Google Scholar
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2018 Państwowa Wyższa Szkoła Zawodowa w Tarnowie & Autor
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne 4.0 Międzynarodowe.