The role of BCG in prevention of tuberculosis and the strategies to improve its immunogenicity

Authors

  • Jolanta Mazurek Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden

DOI:

https://doi.org/10.5604/01.3001.0012.1373

Keywords:

tuberculosis, vaccine, BCG, Mycobacterium tuberculosis

Abstract

Tuberculosis (TB) remains a major public health problem and the main cause of death from the infectious diseases worldwide. Mycobacterium tuberculosis (Mtb), a causative agent of tuberculosis, is the oldest known human pathogen. The only available TB vaccine, BCG, was first administered in 1921 and since then remains the only protecting tool against TB. Yet, its efficacy is limited and there is an urgent need to design and produce a novel vaccine that will protect against this deadly disease in the era of emerging problems with antibiotic resistance. In this review a current, global TB situation is outlined and the characteristics of BCG are presented. Finally, the strategies leading to generation of BCG variants providing improved protecting efficacy are shortly described.

Downloads

Download data is not yet available.

Koch R. (1882). Die Aetiologie der Tuberkulose, Berl. Klin. Wochenschr, 19, 221–230.   Google Scholar

Comas, I., Coscolla, M., Luo, T., Borrell, S., Holt, K. E., Kato-Maeda, M., ... & Yeboah-Manu, D. (2013). Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature genetics, 45(10), 1176.   Google Scholar

WHO, Global tuberculosis report 2017., World Health Organization, Global tuberculosis report 2017. Geneva, Switzerland, 2017.   Google Scholar

Tuberculosis surveillance and monitoring in Europe Centre for Disease Prevention and Control/WHO Regional Office for Europe., Stockholm: European Centre for Disease Prevention and Control, 2015.   Google Scholar

Getahun, H., Matteelli, A., Abubakar, I., Aziz, M. A., Baddeley, A., Barreira, D., ... & Cavalcante, S. (2015). Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. European Respiratory Journal, 1563–1576.   Google Scholar

Russell, D. G., Barry, C. E., & Flynn, J. L. (2010). Tuberculosis: what we don’t know can, and does, hurt us. Science, 328(5980), 852–856.   Google Scholar

Lange, C., Chesov, D., Heyckendorf, J., Leung, C. C., Udwadia, Z., & Dheda, K. (2018). Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment. Respirology.   Google Scholar

Nieuwenhuizen, N.E., Kaufmann, S.H.E. (2018). Next-Generation Vaccines Based on Bacille Calmette-Guerin, Front Immunol, 9, 121.   Google Scholar

Kaufmann, S. H., Weiner, J., & von Reyn, C. F. (2017). Novel approaches to tuberculosis vaccine development. International Journal of Infectious Diseases, 56, 263–267.   Google Scholar

Brosch, R., Gordon, S. V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., … & Parsons, L. M. (2002). A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proceedings of the national academy of Sciences, 99(6), 3684–3689.   Google Scholar

Ganguly, N., Siddiqui, I., & Sharma, P. (2008). Role of M. tuberculosis RD-1 region encoded secretory proteins in protective response and virulence. Tuberculosis, 88(6), 510–517.   Google Scholar

Pym, A. S., Brodin, P., Brosch, R., Huerre, M., & Cole, S. T. (2002). Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Molecular microbiology, 46(3), 709–717.   Google Scholar

Fine, P. E. (1995). Variation in protection by BCG: implications of and for heterologous immunity. The Lancet, 346(8986), 1339–1345.   Google Scholar

Adinarayanan, S., Culp, R. K., Subramani, R., Abbas, K. M., Radhakrishna, S., & Swaminathan, S. (2017). Role of bacille Calmette-Guérin in preventing tuberculous infection. The International Journal of Tuberculosis and Lung Disease, 21(4), 420–424.   Google Scholar

Hart, P. D. A., & Sutherland, I. (1977). BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br Med J, 2(6082), 293–295.   Google Scholar

Rodrigues, L. C., Diwan, V. K., & Wheeler, J. G. (1993). Protective effect of BCG against tuberculous meningitis and miliary tuberculosis: a meta-analysis. International journal of epidemiology, 22(6), 1154–1158.   Google Scholar

Trunz, B. B., Fine, P. E. M., & Dye, C. (2006). Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. The Lancet, 367(9517), 1173–1180.   Google Scholar

WHO, BCG vaccine: WHO position paper, February 2018 – Recommendations, Vaccine, (2018).   Google Scholar

Zwerling, A., Behr, M. A., Verma, A., Brewer, T. F., Menzies, D., & Pai, M. (2011). The BCG World Atlas: a database of global BCG vaccination policies and practices. PLoS medicine, 8(3), e1001012.   Google Scholar

Kleinnijenhuis, J., Quintin, J., Preijers, F., Benn, C. S., Joosten, L. A., Jacobs, C., ... & Van Crevel, R. (2014). Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. Journal of innate immunity, 6(2), 152–158.   Google Scholar

Garly, M. L., Martins, C. L., Balé, C., Baldé, M. A., Hedegaard, K. L., Gustafson, P., ... & Aaby, P. (2003). BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa: a non-specific beneficial effect of BCG?. Vaccine, 21(21–22), 2782–2790.   Google Scholar

Quan, Y., Jeong, C. W., Kwak, C., Kim, H. H., Kim, H. S., & Ku, J. H. (2017). Dose, duration and strain of bacillus Calmette–Guerin in the treatment of nonmuscle invasive bladder cancer: Meta-analysis of randomized clinical trials. Medicine, 96(42).   Google Scholar

Kates, M., Nirschl, T., Sopko, N., Hahn, N., McConkey, D., Baras, A., ... & Bivalacqua, T. (2017). Intravesical BCG induces CD4 T Cell expansion in an immune competent model of bladder cancer, Cancer Immunol Res, 5 (2017) 594–603.   Google Scholar

Ratliff, T. L., Ritchey, J. K., Yuan, J. J., Andriole, G. L., & Catalona, W. J. (1993). T-cell subsets required for intravesical BCG immunotherapy for bladder cancer. The Journal of urology, 150(3), 1018–1023.   Google Scholar

Bisetto, L. H. L., & Ciosak, S. I. (2017). Analysis of adverse events following immunization caused by immunization errors. Revista brasileira de enfermagem, 70(1), 87–95.   Google Scholar

Amanati, A., Pouladfar, G., Kadivar, M. R., Dashti, A. S., Jafarpour, Z., Haghpanah, S., & Alborzi, A. (2017). A 25-year surveillance of disseminated Bacillus Calmette–Guérin disease treatment in children in Southern Iran. Medicine, 96(52), e9035.   Google Scholar

Liaw, F., Tan, Y. Y., & Hendry, D. (2017). Systemic BCGosis following intravesical BCG instillation for bladder carcinoma. Clinical case reports, 5(10), 1569–1572.   Google Scholar

Lukacs, S., Tschobotko, B., Szabo, N. A., & Symes, A. (2013). Systemic BCG-osis as a rare side effect of intravesical BCG treatment for superficial bladder cancer. Case reports in urology, 2013, 821526.   Google Scholar

Rowland, R., & McShane, H. (2011). Tuberculosis vaccines in clinical trials. Expert review of vaccines, 10(5), 645–658.   Google Scholar

Voss, G., Casimiro, D., Neyrolles, O., Williams, A., Kaufmann, S. H., McShane, H., ... & Fletcher, H. A. (2018). Progress and challenges in TB vaccine development. F1000Research, 7, 199.   Google Scholar

Cardona, P. J., & Williams, A. (2017). Experimental animal modelling for TB vaccine development. International Journal of Infectious Diseases, 56, 268–273.   Google Scholar

McShane, H., & Williams, A. (2014). A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis, 94(2), 105–110.   Google Scholar

Layre, E., Mazurek, J., Gilleron, M. (2016). Glycolipid Presentation by CD1, eLS, Encyclopedia of Life Sciences 2016.   Google Scholar

Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S., & Small, P. M. (1999). Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science, 284(5419), 1520–1523.   Google Scholar

Dey, B., Jain, R., Khera, A., Rao, V., Dhar, N., Gupta, U. D., ... & Tyagi, A. K. (2009). Boosting with a DNA vaccine expressing ESAT-6 (DNAE6) obliterates the protection imparted by recombinant BCG (rBCGE6) against aerosol Mycobacterium tuberculosis infection in guinea pigs. Vaccine, 28(1), 63–70.   Google Scholar

Johansen, P., Fettelschoss, A., Amstutz, B., Selchow, P., Waeckerle-Men, Y., Keller, P., … & Sander, P. (2011). Relief from Zmp1-mediated arrest of phagosome maturation is associated with facilitated presentation and enhanced immunogenicity of mycobacterial antigens. Clinical and Vaccine Immunology, 18(6), 907–913.   Google Scholar

Khatri, B., Whelan, A., Clifford, D., Petrera, A., Sander, P., & Vordermeier, H. M. (2014). BCG Δzmp1 vaccine induces enhanced antigen specific immune responses in cattle. Vaccine, 32(7), 779–784.   Google Scholar

Nascimento, I. P., Rodriguez, D., Santos, C. C., Amaral, E. P., Rofatto, H. K., Junqueira-Kipnis, A. P., ... & Winter, N. (2017). Recombinant BCG Expressing LTAK63 Adjuvant induces Superior Protection against Mycobacterium tuberculosis. Scientific reports, 7(1), 2109.   Google Scholar

Gonzalo-Asensio, J., Marinova, D., Martin, C., & Aguilo, N. (2017). MTBVAC: Attenuating the human pathogen of tuberculosis towards a promising vaccine against the TB epidemic. Frontiers in immunology, 8, 1803.   Google Scholar

Lahey, T., Laddy, D., Hill, K., Schaeffer, J., Hogg, A., Keeble, J., ... & von Reyn, C. F. (2016). Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PloS one, 11(12), e0168521.   Google Scholar

von Reyn, C. F., Lahey, T., Arbeit, R. D., Landry, B., Kailani, L., Adams, L. V., ... & Tvaroha, S. (2017). Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: A randomized, controlled trial of DAR-901. PloS one, 12(5), e0175215.   Google Scholar

Tameris, M. D., Hatherill, M., Landry, B. S., Scriba, T. J., Snowden, M. A., Lockhart, S., ... & Mahomed, H. (2013). Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. The Lancet, 381(9871), 1021–1028.   Google Scholar

Nemes, E., Hesseling, A. C., Tameris, M., Mauff, K., Downing, K., Mulenga, H., ... & Hanekom, W. A. (2017). Safety and Immunogenicity of Newborn MVA85A Vaccination and Selective, Delayed Bacille Calmette-Guerin for Infants of Human Immunodeficiency Virus-Infected Mothers: A Phase 2 Randomized, Controlled Trial. Clinical Infectious Diseases, 66(4), 554–563.   Google Scholar

Downloads

Published

2018-06-22

How to Cite

Mazurek, J. (2018). The role of BCG in prevention of tuberculosis and the strategies to improve its immunogenicity. Health Promotion & Physical Activity, 2(1), 17–22. https://doi.org/10.5604/01.3001.0012.1373

Issue

Section

Original article