Toksykologiczne zagrożenia wieku niemowlęcego i dziecięcego

Autor

  • Krzysztof L. Krzystyniak Państwowa Wyższa Szkoła Zawodowa w Tarnowie, Instytut Ochrony Zdrowia; Université du Québec à Montréal, Kanada
  • Andrzej Marszałek Synevo Polska, Warszawa
  • Mieczysław Obiedziński Państwowa Wyższa Szkoła Informatyzacji i Przedsiębiorczości w Łomży

DOI:

https://doi.org/10.5604/01.3001.0010.7708

Słowa kluczowe:

środowiskowe zdrowie dzieci (CEH), biomonitorowanie człowieka (HBM), zaburzenia układu rozrodczego, cukrzyca typu 1 (T1D), zespół zaburzeń autystycznych (ASD), endokrynomimetyki (EDs), ksenobiotyki środowiskowe

Abstrakt

Środowiskowe zdrowie dzieci (pediatria środowiskowa) w ciągu ostatnich trzech dekad stało się zauważalną dziedziną, w oparciu o badania toksykologiczne, epidemiologiczne i medycynę środowiskową. Wczesnodziecięce narażenie na chemikalia, negatywne czynniki psychospołeczne i nieprawidłowe odżywianie, mogą powodować choroby w okresie dziecięcym i całym życiu. W czasie minionych kilku dekad dramatycznie wzrosły przypadki dziecięcej cukrzycy typu pierwszego (T1D), zespołu zaburzeń autystycznych (ASD), zaburzeń rozwoju układu rozrodczego, alergii i innych schorzeń przewlekłych u dzieci. Ich etiologia i epidemiologia w społeczeństwach krajów Zachodu pozostają niewyjaśnione. Wielu naukowców sądzi, że w analizie przyczyn zwiększonej zachorowalności na te schorzenia pomijany jest aspekt interakcji czynników środowiskowych z predyspozycjami genetycznymi.

Statystyka pobrań

Statystyki pobrań nie są jeszcze dostępne

Woodruff T.J., Zota A.R., Schwartz J.M. Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ Health Persp, 2011, 119, 878-885.   Google Scholar

Ostrea E.M., Bielawski D.M., Posecion N.C., Corrion M., Villanueva-Uy E., Bernardo R.C., Jin Y., Janisse J.J., Ager J.W. Combined analysis of prenatal (maternal hair and blood) and neonatal (infant hair, cord blood and meconium) matrices to detect fetal exposure to environmental pesticides. Environ Res, 2009, 109, 116-122.   Google Scholar

Jeong Y., Lee S., Kim S., Choi S.D., Park J., Kim H.J., Lee J.J., Choi G., Choi S., Kim S., Kim S.Y. Occurrence and prenatal exposure to persistent organic   Google Scholar

pollutants using meconium in Korea: Feasibility of meconium as a non-invasive human matrix. Environ Res, 2016, 147, 8–15.   Google Scholar

Joas R., Casteleyn L., Biot P., Kolossa-Gehring M., Castano A., Angerer J., Schoeters G., Sepai O., Knudsen L.E., Joas A., Horvat M. Harmonized human biomonitoring in Europe: Activities towards EU HBM framework. Int J Hygiene Environ Health, 2012, 215, 172-175.   Google Scholar

Neal-Kluever A., Aungst J., Gu Y., Hatwell K., Muldoon-Jacobs K., Liem A., Ogungbesan A., Shackelford M. Infant toxicology: State of the science and considerations in evaluation. Food Chem Toxicol, 2014, 70, 68-83.   Google Scholar

Toms L.M., Hearn L., Mueller J.F., Harden F.A. Assessing infant exposure to persistent organic pollutants via dietary intake in Australia. Food Chem Toxicol, 2016, 87, 166-171.   Google Scholar

Goenka A., Kollman T.R. Development of immunity in early life. J Infect, 2015, 71, 112-120.   Google Scholar

Martinez–Arguelles D.B., McIntosh M., Rohlicek C.V., Culty M., Zirkin B.R., Papadopoulos V. Maternal in utero exposure to endocrine disruptor di-(2-ethylhexyl) phthalate affects the blood pressure of adult male offspring. Toxicol Appl Pharmacol, 2013, 266, 95-100.   Google Scholar

Krzystyniak K.L., Kalota H.M. Ograniczona płodność męska. Wyd. Medyk, Warszawa, 2014.   Google Scholar

Damgaard I.N., Skakkebaek N.E., Toppari J., Virtanen H.E., Shen H., Schramm K.W., Petersen J.H., Jensen T.K., Main K.M., Nordic Cryptorchidism Study Group. Persistent pesticides in human breast milk and cryptorchidism. Environ. Health Persp, 2016, 114, 1133-1138.   Google Scholar

Hooper K., She J., Sharp M., Chow J., Jewell N., Gephart R., Holden A. Depuration of plybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in breast milk from California first-time mothers (primiparae). Environ Health Persp, 2007, 115, 1271-1275.   Google Scholar

Main K.M., Kiviranta H., Virtanen H.E., Sundqvist E., Tuomisto J.T., Tuomisto J., Vartiainen T., Skakkebaek N.E., Toppari J. Flame retardants in placenta and breast milk and cryptorchidism in newborn boys. Human Reprod, 2007, 115, 1519-1525.   Google Scholar

Tao Z., Shi A., Zhao J. Epidemiological perspectives if diabetes. Cell Biochem Biophs, 2015, 73, 181-185.   Google Scholar

Patterson C.C., Dahlquist G.G., Gyürüs E., Green A., Soltész G., EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted 2005-20: a multicentre prospective registration study. Lancet, 2009, 373, 2077-2033.   Google Scholar

Wojcik M., Sudacka M., Wasyl B., Ciechanowska M., Nazim J., Stelmach M., Starzyk J.B. Incidence of type 1 diabetes mellitus during 26 years of observation and prevalence of diabetic ketoacidosis in the later years. Eur J Pediatr, 2015, 174, 1319-1324.   Google Scholar

Fendler W., Borowiec M., Baranowska-Jazwiecka A., Szadkowska A., Skala-Zamorowska E., Deja G., Jarosz-Chobot P., Techmanska I., Bautembach-Minkowska J., Mysliwiec M., Zmyslowska A. Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign. Diabetologia, 2012, 55, 26131-2635.   Google Scholar

Fu J.F., Liang L., Gong C.X., Xiong F., Luo F.H., Liu G.L., Li P., Liu L., Xin Y., Yao H., Cui L.W. Status and trends of diabetes in Chinese children: analysis of data from 14 medical centers. World J Pediatr, 2013, 9, 127-134.   Google Scholar

Lu D., Lin Y., Feng C., Wang D., She J., Shen H., Wang G., Zhou Z. Levels of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in breast milk in Shanghai, China: A temporal upward trend. Chemosphere , 2015, 137, 14-24.   Google Scholar

Krzystyniak K.L., Marszałek A., Obiedziński M. Zaburzenia metaboliczne w autyzmie. Gabinet Prywatny, 2015.   Google Scholar

Lundström S., Reichenberg A., Anckarsäter H., Lichtenstein P., Gillberg C. Autism phenotype versus registered diagnosis in Swedish children: prevalence trends over 10 years in general population samples. BMJ, 2015, 350, 1-6.   Google Scholar

Nevison S. A comparison of temporal trends in United States autism prevalence to trends in suspected environmental factors. Environ Res, 2014, 13, 73-89.   Google Scholar

Skonieczna-Żydecka K., Gorzkowska I., Pierzak-Sominka J., Adler G. The prevalence of autism spectrum disorders in West Pomeranian and Pomeranian regions of Poland. J Appl Res Intellect Disabil, 2016, 1, doi: 10.1111/jar.12238.   Google Scholar

Anderson G., Maes M. Redox regulation in the autistic spectrum: role of tryptophan catabolities, immune-inflammation, autoimmunity and the amygdale. Curr Neuropharmacol, 2014, 12, 148-167.   Google Scholar

Braun J.M., Kalkbrenner A.E., Just A.C., Yolton K., Calafat A.M., Sjödin A., Hauser R., Webster G.M., Chen A., Lanphear B.P. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive and stereotypic behaviors in 4- and 5-year old children: The HOME Study. Environ Health Persp, 2014, 122, 513-520.   Google Scholar

Dickerson A.S., Rahbar M.H., Han I., Bakian A.V., Bilder D.A., Harrington R.A., Pettygrove S., Durkin M., Kirby R.S., Wingate M.S., Tian L.H. Autism spectrum disorder prevalence and proximity to industrial facilities releasing arsenic, lead or mercury. Sci Total Environ, 2015, 536, 254-251.   Google Scholar

Yassa H.A. Autism: A form of lead and mercury toxicity. Environ Toxicol Pharmacol, 2014, 38, 1016–1024.   Google Scholar

Geier D.A., King P.G., Hooker B.S., Dórea J.G., Kern J.K., Sykes L.K., Geier M.R. Thimerosal: Clinical, epidemiologic and biochemical studies. Clin Chim Acta, 2014, 444, 212-220.   Google Scholar

DeSoto M.C. Ockham razor and autism: The case for neurodevelopmental neurotoxins contributing to a disease of neurodevelopment. Neurotoxicol., 2009, 30, 331-337.   Google Scholar

Samsel A., Seneff S. Glyphosate suppression of cytochrome P450 enzymes and amino acids biosynthesis by the gut mikrobiome: pathways to modern diseases. Entropy, 2013, 15, 1416-1463.   Google Scholar

Samsel A., Seneff S. Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies. Surg Neurol Int, 2015, 6, 45-60.   Google Scholar

Viel J.F., Warembourg C., Le Maner-Idrissi G., Lacroix A., Limon G., Rouget F., Monfort C., Durand G., Cordier S., Chevrier C. Pyrethroid insecticide exposure and cognitive developmental disabilities in children: The PELAGIE mother–child cohort. Environ Int, 2015, 82, 69-75.   Google Scholar

Shelton J.F., Geraghty E.M., Tancredi D.J., Delwiche L.D., Schmidt R.J., Ritz B., Hansen R.L., Hertz-Picciotto I. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: The CHARGE Study. Environ Health Persp, 2014, 122, 1103-1109.   Google Scholar

Schug T.T., Blawas A.M., Gray K., Heindel J.J., Lawler C.P. Elucidationg the links between endocrine disruptors and neurodevelopment. Endocrinol, 2015, 156, 1941-1951.   Google Scholar

* Fragmenty artykułu pochodzą z książki: „Biomonitorowanie człowieka w profilaktyce zatruć środowiskowych”, K.L. Krzystyniak, A. Marszałek, H. Kalota, M. Obiedziński, Medyk, Warszawa, 2016 (przyjęto do druku).   Google Scholar

Pobrania

Opublikowane

2016-12-30

Jak cytować

Krzystyniak, K., Marszałek, A., & Obiedziński, M. (2016). Toksykologiczne zagrożenia wieku niemowlęcego i dziecięcego. Health Promotion & Physical Activity, (1), 75–90. https://doi.org/10.5604/01.3001.0010.7708