Assessment of sexual life and social life in people with multiple sclerosis
DOI:
https://doi.org/10.55225/hppa.476Keywords:
multiple sclerosis, rehabilitation, assessment, socialization, sexual lifeAbstract
Introduction: Multiple sclerosis is a debilitating condition that affects the central nervous system and is most common in young people. Over time, the relapses associated with the disease can cause damage, and within ten years of onset, half of patients may experience progressive symptoms. Unfortunately, once a patient enters a progressive stage, there is no longer any improvement or remission, though some patients may experience a longer period of stability.
Objectives: The goal of this study is to examine the relationship between social and sexual life in patients with multiple sclerosis, considering the progressive nature of the disease, the fluctuating psychological impact, and the impact on their reproductive abilities.
Methods: The study utilized the Multiple Sclerosis Quality of Life Questionnaire to assess the participants. This questionnaire measures quality of life by asking generic and specific questions related to multiple sclerosis, with a total of 18 items addressing specific needs such as fatigue, cognitive function, sexual function, daily activities, social interaction, and more.
Results: The results indicated that most women with multiple sclerosis reported decreased lubrication, while men’s main concern was satisfying their partner. The majority of participants reported being neither satisfied nor dissatisfied with their sexual and social life. The frequency of sexual dysfunction was found to be higher in women with multiple sclerosis compared to the general population, with decreased libido being the most commonly reported issue. Individuals with primary progressive multiple sclerosis were found to have significantly increased problems with sexual function.
Conclusion: This study found a correlation between social and sexual life for individuals with multiple sclerosis. As their social life worsened, their sexual life and reproductive capacity were also negatively impacted.
Downloads
References
Unger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832-2838. doi: 10.1001/jama.296.23.2832. DOI: https://doi.org/10.1001/jama.296.23.2832 Google Scholar
Trajkovski EV. Medicinski osnovi na invalidnosta. Skopje: Filozofskifakultet, Institut za defektologija; 2008. Google Scholar
Nouri N, Tabesh G, Saboori A, et al. Protective and risk factors in multiple sclerosis. Int J Med Rev. 2019;6(2):51-58. doi: 10.29252/IJMR-060205. DOI: https://doi.org/10.29252/IJMR-060205 Google Scholar
Matsui M. Multiple sclerosis immunology for clinicians. Neurology Asia. 2008;(13):195-198. Google Scholar
Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995;80:695-705. doi: 10.1016/0092-8674(95)90348-8. DOI: https://doi.org/10.1016/0092-8674(95)90348-8 Google Scholar
Kira JI, Kanai T, Nishimura Y, et al. Western versus Asian types of multiple sclerosis: Immunogenetically and clinically distinct disorders. Ann Neurol. 1996;40(4):569-574. doi: 10.1002/ana.410400405. DOI: https://doi.org/10.1002/ana.410400405 Google Scholar
Misu T, Onodera H, Fujihara K, et al. Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: Imbalance of Th1/Th2-associated chemokine signaling. J Neuroimmunol. 2001;114(1-2):207-212. doi: 10.1016/s0165-5728(00)00456-2. DOI: https://doi.org/10.1016/S0165-5728(00)00456-2 Google Scholar
Matsui M, Araya S-I, Wang H-Y, Matsushima K, Saida T. Differences in systemic and central nervous system cellular immunity relevant to relapsing – remitting multiple sclerosis. J Neurol. 2005;252(8):908-915. doi: 10.1007/s00415-005-0778-z. DOI: https://doi.org/10.1007/s00415-005-0778-z Google Scholar
Feinstein A. The neuropsychiatry of multiple sclerosis. Can J Psychiatry. 2004;49(3):157-163. doi: 10.1177/070674370404900302. DOI: https://doi.org/10.1177/070674370404900302 Google Scholar
Sadovnick AD, Eisen K, Ebers GC, Paty DW. Cause of death in patients attending multiple sclerosis clinics. Neurology. 1991;41(8):1193-1196. doi: 10.1212/wnl.41.8.1193. DOI: https://doi.org/10.1212/WNL.41.8.1193 Google Scholar
Hernán MA, Olek MJ, Ascherio A. Geographic variation of MS incidence in two prospective studies of US women. Neurology. 1999;53(8):1711-1718. doi: 10.1212/wnl.53.8.1711. DOI: https://doi.org/10.1212/WNL.53.8.1711 Google Scholar
Ebers GC, Sadovnick AD, Dyment DA, Yee IM, Willer CJ, Risch N. Parent-of-origin effect in multiple sclerosis: observations in half-siblings. Lancet. 2004;363(9423):1773-1774. doi: 10.1016/S0140-6736(04)16304-6. DOI: https://doi.org/10.1016/S0140-6736(04)16304-6 Google Scholar
Guo Z-N, He S-Y, Zhang H-L, Wu J, Yang Y. Multiple sclerosis and sexual dysfunction. Asian J Androl. 2012;14(4):530-535. doi: 10.1038/aja.2011.110. DOI: https://doi.org/10.1038/aja.2011.110 Google Scholar
Mostert S, Kesselring J. Effects of a short-term exercise training program on aerobic fitness, fatigue, health perception and activity level of subjects with multiple sclerosis. Mult Scler. 2002;8(2):161-168. doi: 10.1191/1352458502ms779oa. DOI: https://doi.org/10.1191/1352458502ms779oa Google Scholar
Patti F, Ciancio MR, Cacopardo M, et al. Effects of a short outpatient rehabilitation treatment on disability of multiple sclerosis patients: A randomised controlled trial. J Neurol. 2003;250(7):861-866. doi: 10.1007/s00415-003-1097-x. DOI: https://doi.org/10.1007/s00415-003-1097-x Google Scholar
Rietberg MB, Brooks D, Uitdehaag BMJ, Kwakkel G. Tratamiento con ejercicios para la esclerosis multiple. La Biblioteca Cochrane Plus. 2007;2:1-28. https://silo.tips/download/tratamiento-con-ejercicios-para-la-esclerosis-multiple. Google Scholar
Wallin MT, Page WF, Kurtzke JF. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann Neurol. 2004;55(1):65-71. doi: 10.1002/ana.10788. DOI: https://doi.org/10.1002/ana.10788 Google Scholar
Whitacre CC. (2001). Sex differences in autoimmune disease. Nat Immunol. 2001;2(9):777-7 80. doi: 10.1038/ni0901-777. DOI: https://doi.org/10.1038/ni0901-777 Google Scholar
Sundström P, Juto P, Wadell G, et al. An altered immune response to Epstein-Barr virus in multiple sclerosis: A prospective study. Neurology. 2004;62(12):2277-2282. doi: 10.1212/01.wnl.0000130496.51156.d7. DOI: https://doi.org/10.1212/01.WNL.0000130496.51156.D7 Google Scholar
Marrie RA. Environmental risk factors in multiple sclerosis aetiology. Lancet Neurol. 2004;3(12):709-718. doi: 10.1016/S1474-4422(04)00933-0. DOI: https://doi.org/10.1016/S1474-4422(04)00933-0 Google Scholar
Layh-Schmitt G, Bendl C, Hildt U, et al. Evidence for infection with Chlamydia pneumoniae in a subgroup of patients with multiple sclerosis. Ann Neurol. 2000;47(5):652-655. DOI: https://doi.org/10.1002/1531-8249(200005)47:5<652::AID-ANA15>3.0.CO;2-5 Google Scholar
Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364(9451):2106-2612. doi: 10.1016/S0140-6736(04)17551-X. DOI: https://doi.org/10.1016/S0140-6736(04)17551-X Google Scholar
Matsuoka T, Matsushita T, Kawano Y. et al. Heterogeneity of aquaporin-4 autoimmunity and spinal cord lesions in multiple sclerosis in Japanese. Brain. 2007;130(Pt 5):1206-1223. doi: 10.1093/brain/awm027. DOI: https://doi.org/10.1093/brain/awm027 Google Scholar
Traugott U, Reinherz EL, Raine CS. Multiple sclerosis: Distribution of T cell subsets within active chronic lesions. Science. 1983;219(4582):308-310. doi: 10.1126/science.6217550. DOI: https://doi.org/10.1126/science.6217550 Google Scholar
Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707-717. doi: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q. DOI: https://doi.org/10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q Google Scholar
Matsui M, Mori KJ, Saida T. Cellular immunoregulatory mechanisms in the central nervous system: Characterization of noninflammatory and inflammatory cerebrospinal fluid lymphocytes. Ann Neurol. 1990;27(6):647-651. doi: 10.1002/ana.410270611. DOI: https://doi.org/10.1002/ana.410270611 Google Scholar
Antel JP, Nicholas MK, Bania MB, Reder AT, Arnason BG, Joseph L. Comparison of T8+ cell-mediated suppressor and cytotoxic functions in multiple sclerosis. J Neuroimmunol. 1986;12(3):215-224. doi: 10.1016/s0165-5728(86)80005-4. DOI: https://doi.org/10.1016/S0165-5728(86)80005-4 Google Scholar
Koch-Henriksen N. The Danish multiple sclerosis registry: A 50-year follow-up. Mult Scler. 1999;5(4):293-296. doi: 10.1177/135245859900500418. DOI: https://doi.org/10.1177/135245859900500418 Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Denis Arsovski
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.