In silico design of self-assembly nanostructured polymer systems by multiscale molecular modeling

Authors

DOI:

https://doi.org/10.5604/01.3001.0013.4795

Keywords:

multiscale molecular modeling, polymer, nanochemistry

Abstract

The fast development of digitalization and computational science is opening new possibilities for a rapid design of new materials. Computational tools coupled with focused experiments can be successfully used for the design of new nanostructured materials in different sectors, particularly in the area of biomedical applications. This paper starts with a general introduction on the future of computational tools for the design of new materials and introduces the paradigm of multiscale molecular modeling. It then continues with the description of the multiscale (i.e., atomistic, mesoscale and finite element calculations) computational recipe for the prediction of novel materials and structures for biomedical applications. Finally, the comparison of in silico and experimental results on selected systems of interest in the area of life sciences is reported and discussed. The quality of the agreement obtained between virtual and real data for such complex systems indeed confirms the validity of computational tools for the design of nanostructured polymer systems for biomedical applications.

Downloads

Download data is not yet available.

Plunket JW, Plunkett's Nanotechnology & Mems Industry Almanac 2017: Nanotechnology & Mems Industry Market Research, Statistics, Trends & Leading Companies, 30 May 2017, Editor Plunkett's Nanotechnology & Mems Industry Almanac.   Google Scholar

White A, The Materials Genome Initiative: One year on, MRS Bull., 2012; 37:715¬–716.   Google Scholar

Hermann M, Pentek T, Otto B, Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, 2016, 3928 (doi: 10.1109/HICSS.2016.488).   Google Scholar

Roco MC, Bainbridge WS, Tonn B, Whitesides G, (Eds.), Convergence of Knowledge, Technology and Society. Beyond Convergence of Nano-Bio-Info-Cognitive Technologies. Springer Verlag, 2013.   Google Scholar

Scot T, Walsh A, Anderson B, O’Connor A, Economic Analysis of National Needs for Technology Infrastructure to Support the Materials Genome Initiative, 2018, Final Report, RTI International Project Number 0215231.   Google Scholar

Charpentier JC, The triplet “molecular processes–product–process” engineering: the future of chemical engineering ?, Chem. Eng. Sci., 2002; 57:4667–4690.   Google Scholar

Glotzer SC, Paul W, Molecular and Mesoscale Simulation Methods for Polymer Materials, Annu. Rev. Mater. Res., 2002; 32:401–436.   Google Scholar

Zeng QH, Yu AB, Lu GQ, Multiscale modeling and simulation of polymer nanocomposites, Progr. Polym. Sci., 2008, 33, 191–269.   Google Scholar

Jancar J, Douglas JF, Starr FW, Kumar SK, Cassgnau P, Lesser AJ, Sternstein SS, Buehler MJ, Current issues in research on structure-property relationships in polymer nanocomposites, Polymer, 2010; 51:3321–3343.   Google Scholar

Yip S, Synergistic science, Nat. Mater., 2003; 2:3–5.   Google Scholar

Mohanty S, Ross R, Multiscale Simulation Methods for Nanomaterials, ed. Mohanty S and Ross R, John Wiley & Sons, Hoboken, 2008, p.1.   Google Scholar

Scocchi G, Posocco P, Handgraaf JW, Fraaije JGEM, Fermeglia M, Pricl S, A Complete Multiscale Modelling Approach for Polymer–Clay Nanocomposites, Chem. Eur. J., 2009; 15:7586–7592.   Google Scholar

Pricl S, Posocco P, Scocchi G, Fermeglia M, Handbook of Nanophysics: Functional Nanomaterials, ed. K.D. Sattler, CRC Press, Boca Raton, 2010, pp. 3-1- 3-15.   Google Scholar

Pereira SP, Scocchi G, Toth R, Posocco P, Romero-Nieto D, Pricl S, Fermeglia M, Multiscale modeling of polymer/clay nanocomposites, J. Multiscale Model., 2011; 3:151–176.   Google Scholar

Toth R, Santese F, Pereira SP, Nieto DR, Pricl S, Fermeglia M, Posocco P, ize and shape matter! A multiscale molecular simulation approach to polymer nanocomposites, J. Mater. Chem., 2012; 22:5398–5409.   Google Scholar

Mark F Horstemeyer, Multiscale Modeling: A Review, 2009, in Practical Aspects of Computational Chemistry, Practical Aspects of Computational Chemistry, ed. J. Leszczynski and M.K. Shukla, Springer Science+Business Media, pp. 87–135.   Google Scholar

Steinhauser MO, Hiermaier S, A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics, Int. J. Mol. Sci., 2009; 10 (12):5135–5216.   Google Scholar

Curtin WA, Miller RE, Atomistic/continuum coupling in computational materials science, Modelling Simul. Mater. Sci. Eng,, 2003; 11(3):R33–R68.   Google Scholar

Yeo J, Jung GS, Martín-Martínez FJ, Beem J, Qin Z, Buehler MJ, Multiscale Design of Graphyne-Based Materials for High-Performance Separation Membranes, Adv. Mater, 2019, DOI: 10.1002/adma.201805665.   Google Scholar

Casalini T, Perale G, From Microscale to Macroscale: Nine Orders of Magnitude for a Comprehensive Modeling of Hydrogels for Controlled Drug Delivery, Gels, 2019; 5:28.   Google Scholar

Moore G, "IEEE Technical Digest 1975" April 7, 1975, Intel Corp; "Moore's Law in perspective," 2005, Intel information sheet 306971-001US.   Google Scholar

de Baas AF, What makes a material function? Let me compute the ways…, European Commission, Directorate-General for Research and Innovation, Directorate D - Industrial Technologies, Unit D3 - Advanced Materials and Nanotechnologies, Bruxelles, 2017 (doi 10.2777/417118).   Google Scholar

McWeeny R, Methods of Molecular Quantum Mechanics, 2nd Edition, Academic Press, Cambridge, 1992.   Google Scholar

Ercolessi F, Adams JB, Interatomic Potentials from First-Principles Calculations: The Force-Matching Method, Europhys. Lett., 1994; 26:583.   Google Scholar

Fermeglia M, Ferrone M, Pricl S, Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy, Fluid. Phase. Equilib., 2003; 212:315–329.   Google Scholar

Vv. Aa., Molecular Simulations and Industrial Applications, ed. K.E. Gubbins and N. Quirke, Gordon & Breach, Amsterdam, 1996.   Google Scholar

Chen JC, Kim AS, Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems, Adv. Colloid Interface Sci., 2004; 112:159–173.   Google Scholar

Hoogerbrugge PJ, Koelman JMVA, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhys. Lett., 1992; 19:155.   Google Scholar

Groot RD, Warren PB, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 1997; 107:4423.   Google Scholar

Chen S, Doolen GD, Lattice Boltzmann Method for Fluid Flows, Annu. Rev. Fluid Mech., 1998; 30:329-364.   Google Scholar

Glotzer SC, in Annual Reviews of Computational Physics, ed. Stauffer D, World Scientific, Singapore, pp. 1–46.   Google Scholar

Fraaije JGEM, van Vlimmeren BAC, Maurits NM, Postma M, Evers OA, Hoffmann C, Altevogt P, Goldbeck-Wood G, The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts, J. Chem. Phys. 1997; 106:4260.   Google Scholar

Hughes TJR, The Finite Element Method, Prentice-Hall, Englewood Cliffs, 1987.   Google Scholar

Gusev AA, Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers, Macromolecules, 2001; 34:3081–3093.   Google Scholar

Goddard III WA, Cagin T, Blanco M, Vaidehi N, Dasgupta S, Floriano W, Belmares M, Kua J, Zamanakos G, Kashihara S, Iotov M, Gao G, Strategies for multiscale and simulation of organic materials: polymers and biopolymers, Comput. Theor. Polym. Sci., 2011; 11:329–343.   Google Scholar

McGrother S, Goldbeck-Wood G, Lam YM, Integration of modelling at various length and time scales, Lect. Notes Phys., 2004; 642:223–230.   Google Scholar

Scocchi G, Posocco P, Fermeglia M, Pricl S, Polymer−Clay Nanocomposites: A Multiscale Molecular Modeling Approach, J. Phys. Chem. B, 2007, 111, 2143–2151.   Google Scholar

Cosoli P, Scocchi G, Pricl S, Fermeglia M, Many-scale molecular simulation for ABS–MMT nanocomposites: Upgrading of industrial scraps, Microporous Mesoporous Mater., 2008; 107:169–179.   Google Scholar

Fermeglia M, Pricl S, Multiscale molecular modeling in nanostructured material design and process system engineering, Comput. Chem. Eng., 2009; 33:1701–1710.   Google Scholar

Doi M, Material modeling platform, J. Comput. Appl. Math., 2002; 149:13–25.   Google Scholar

Milano G, Müller-Plathe F, Mapping Atomistic Simulations to Mesoscopic Models: A Systematic Coarse-Graining Procedure for Vinyl Polymer Chains, J. Phys. Chem. B, 2005; 109:18609–18619.   Google Scholar

Toth R, Voorn DJ, Handgraaf JW, Fraaije JGEM, Fermeglia M, Pricl S, Posocco P, Multiscale Computer Simulation Studies of Water-Based Montmorillonite/Poly(ethylene oxide) Nanocomposites, Macromolecules, 2009; 42:8260–8270.   Google Scholar

Ghanbari A, Ndoro TVM, Leroy F, Rahimi M, Böhm MC, Müller-Plathe F, Macromolecules, Interphase Structure in Silica–Polystyrene Nanocomposites: A Coarse-Grained Molecular Dynamics Study, 2012; 45:572–584.   Google Scholar

Müller-Plathe F, Coarse‐Graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale and Back, Chem. Phys. Chem., 2002; 3:754–769.   Google Scholar

Fermeglia M, Pricl S, Multiscale modeling for polymer systems of industrial interest, Prog. Org. Coat., 2007; 5:187–199.   Google Scholar

Posocco P, Fermeglia M, Pricl S, Morphology prediction of block copolymers for drug delivery by mesoscale simulations, J. Mat. Chem., 2010; 20:7742–7753.   Google Scholar

Posocco P, Gentilini C, Bidoggia S, Pace A, Franchi P, Lucarini M, Fermeglia M, Pricl S, Pasquato L, ACS Nano, 2012; 6:7243–7253.   Google Scholar

Pengo P, Sologan M, Pasquato L, Guida F, Pacor S, Tossi A, Stellacci F, Marson D, Boccardo S, Pricl S, Posocco P, Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives, Eur. Biophys. J., 2017; 46:749–77.   Google Scholar

Nanostructure of potential interest for biomedical applications. Dimensions span from few nanometers to hundreds of nanometers with increasing structural complexity

Downloads

Published

2019-09-17

How to Cite

Laurini, E., Marson, D., Fermeglia, M., & Pricl, S. (2019). In silico design of self-assembly nanostructured polymer systems by multiscale molecular modeling. Science, Technology and Innovation, 6(3), 1–10. https://doi.org/10.5604/01.3001.0013.4795

Issue

Section

Original articles