Oral contraceptives do not impact metabolic and cardiorespiratory response during acute high-intensity rowing interval exercise — a pilot study
DOI:
https://doi.org/10.55225/hppa.638Słowa kluczowe:
środki antykoncepcyjne hormonalne, elastyczność metaboliczna, kobieta, ćwiczenia interwałowe o wysokiej intensywnościAbstrakt
Purpose: Increasing prevalence of oral contraceptive (OC) use in physically active females highlights the need for sex-specific exercise metabolism research. This pilot study investigated the influence of chronic OC use on the exercising metabolic and respiratory response during a rowing high-intensity interval exercise (HIIE) protocol in young, healthy, moderately active females.
Methods: Fifteen females [21.9 (3.7) years] were categorized by OC (n = 6) vs. non-oral contraceptive use (NOC) (n = 9). HIIE was four sets of 3 min maximal effort intervals on the rowing ergometer with 3 min rest between intervals and performed during the follicular phase (days 2–10 or inactive pills) of participants’ menstrual cycles. To confirm comparable physical profiles of participants, we collected body fat percentage, fat-free mass, bone mineral density, blood pressure, aerobic fitness, muscular strength and endurance, flexibility, and microvascular function.
Results: Groups were similar in all measures of physical profiles (P > 0.05). Our pilot study showed that OC use or NOC use did not influence the exercising metabolic and cardiorespiratory response to HIIE in young, healthy, moderately active females. Fat oxidation, carbohydrate oxidation, metabolic flexibility, blood lactate concentration, blood glucose, and cardiorespiratory response were similar between groups (P > 0.05).
Conclusion: These findings suggest that there was no significant difference in exercising metabolic and cardiorespiratory response between OC and NOC users.
Statystyka pobrań
Bibliografia
Birch K. Circamensal rhythms in physical performance. Biol Rhythm Res. 2000;31(1):1-14. doi: 10.1076/0929-1016(200002)31:1;1-0;FT001. DOI: https://doi.org/10.1076/0929-1016(200002)31:1;1-0;FT001 Google Scholar
Reilly T. The menstrual cycle and human performance: An overview. Biol Rhythm Res. 2000;31(1):29-40. doi: 10.1076/0929-1016(200002)31:1;1-0;FT029. DOI: https://doi.org/10.1076/0929-1016(200002)31:1;1-0;FT029 Google Scholar
Janse de Jonge X, Thompson B, Han A. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51(12):2610-2617. doi: 10.1249/MSS.0000000000002073. DOI: https://doi.org/10.1249/MSS.0000000000002073 Google Scholar
Christin-Maitre S. History of oral contraceptive drugs and their use worldwide. Best Pract Res Clin Endocrinol Metab. 2013;27(1):3-12. doi: 10.1016/j.beem.2012.11.004. DOI: https://doi.org/10.1016/j.beem.2012.11.004 Google Scholar
Martin D, Sale C, Cooper SB, Elliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perform. 2018;13(7):926-932. doi: 10.1123/ijspp.2017-0330. DOI: https://doi.org/10.1123/ijspp.2017-0330 Google Scholar
Oxfeldt M, Dalgaard LB, Jorgensen AA, Hansen M. Hormonal contraceptive use, menstrual dysfunctions, and self-reported side effects in elite athletes in Denmark. Int J Sports Physiol Perform. 2020;15(10):1377-1384. doi: 10.1123/ijspp.2019-0636. DOI: https://doi.org/10.1123/ijspp.2019-0636 Google Scholar
World Anti-Doping Agency. WADA’s 2025 Prohibited List now in force. https://www.wada-ama.org/en/news/wadas-2025-prohibited-list-now-force. Accessed September 12, 2024. Google Scholar
Daniels K, Abma JC. Current contraceptive status among women aged 15–49: United States, 2017–2019. Hyattsville, MD: National Center for Health Statistics; 2020. Google Scholar
Oosthuyse T, Strauss JA, Hackney AC. Understanding the female athlete: Molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur J Appl Physiol. 2023;123(3):423-450. doi: 10.1007/s00421-022-05090-3. DOI: https://doi.org/10.1007/s00421-022-05090-3 Google Scholar
Lebrun CM. Effect of the different phases of the menstrual cycle and oral contraceptives on athletic performance. Sports Med. 1993;16(6):400-430. doi: 10.2165/00007256-199316060-00005. DOI: https://doi.org/10.2165/00007256-199316060-00005 Google Scholar
Lebrun CM, Petit MA, McKenzie DC, Taunton JE, Prior JC. Decreased maximal aerobic capacity with use of a triphasic oral contraceptive in highly active women: a randomised controlled trial. Br J Sports Med. 2003;37(4):315-320. doi: 10.1136/bjsm.37.4.315. DOI: https://doi.org/10.1136/bjsm.37.4.315 Google Scholar
Burrows M, Peters CE. The influence of oral contraceptives on athletic performance in female athletes. Sports Med. 2007;37(7):557-574. doi: 10.2165/00007256-200737070-00001. DOI: https://doi.org/10.2165/00007256-200737070-00001 Google Scholar
Thompson B, Almarjawi A, Sculley D, Janse de Jonge X. The effect of the menstrual cycle and oral contraceptives on acute responses and chronic adaptations to resistance training: A systematic review of the literature. Sports Med. 2020;50(1):171-185. doi: 10.1007/s40279-019-01219-1. DOI: https://doi.org/10.1007/s40279-019-01219-1 Google Scholar
Elliott-Sale KJ, McNulty KL, Ansdell P, et al. The effects of oral contraceptives on exericse performance in women: A systematic review and meta-analysis. Sports Med. 2020;50(10):1785-1812. doi: 10.1007/s40279-020-01317-5. DOI: https://doi.org/10.1007/s40279-020-01317-5 Google Scholar
Nolan D, McNulty KL, Manninen M, Egan B. The effect of hormonal contraceptive use on skeletal muscle hypertrophy, power and strength adaptations to resistance exercise training: A systematic reveiw and multilevel meta-analysis. Sports Med. 2024;54(1):105-125. doi: 10.1007/s40279-023-01911-3. DOI: https://doi.org/10.1007/s40279-023-01911-3 Google Scholar
Schumpf LF, Braun C, Peric A, et al. The influence of the menstrual cycle and hormonal contraceptives on cardiorespiratory fitness in physically active women: A systematic review and meta-analysis. Heliyon. 2023;9(6):e17049. doi: 10.1016/j.heliyon.2023.e17049. DOI: https://doi.org/10.1016/j.heliyon.2023.e17049 Google Scholar
Wang Q, Wurtz P, Auro K, et al. Effects of hormonal contraception on systemic metabolism: cross-sectional and longitudinal evidence. Int J Epidemiol. 2016;45(5):1445-1457. doi: 10.1093/ije/dyw147. DOI: https://doi.org/10.1093/ije/dyw147 Google Scholar
Silva-Bermudez LS, Toloza FJK, Perez-Matos MC, de Souza RJ, Banfield L, Vargas-Villanueva A, Mendivil CO. Effects of oral contraceptives on metabolic parameters in adult premenopausal women: A meta-analysis. Endocr Connect. 2020;9(10):978-998. doi: 10.1530/EC-20-0423. DOI: https://doi.org/10.1530/EC-20-0423 Google Scholar
Williams JS, Stone JC, Masood Z, Bostad W, Gibala MJ, MacDonald MJ. The impact of natural menstrual cycle and oral contraceptive pill phase on substrate oxidation during rest and acute submaximal aerobic exercise. J Appl Physiol. 2023;135(3):642-654. doi: 10.1152/japplphysiol.00111.2023. DOI: https://doi.org/10.1152/japplphysiol.00111.2023 Google Scholar
Suh S-H, Casazza GA, Horning MA, Miller BF, Brooks GA. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J Appl Physiol. 2003;4(1):285-294. doi: 10.1152/japplphysiol.00693.2002. DOI: https://doi.org/10.1152/japplphysiol.00693.2002 Google Scholar
Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev. 2018;39(4):489-517. doi: 10.1210/er.2017-00211. DOI: https://doi.org/10.1210/er.2017-00211 Google Scholar
Storlien L, Oakes ND, Kelley DE. Metabolic flexibility. Proc Nutr Soc. 2004;63(2):363-368. doi: 10.1079/PNS2004349. DOI: https://doi.org/10.1079/PNS2004349 Google Scholar
Hackney AC. Menstrual cycle hormonal changes and energy substrate metabolism in exercising women: A perspective. Int J Environ Res Public Health. 2021;18(19):10024. doi: 10.3390/ijerph181910024. DOI: https://doi.org/10.3390/ijerph181910024 Google Scholar
Isacco L, Thivel D, Pelle AM, et al. Oral contraception and energy intake in women: impact on substrate oxidation during exercise. Appl Physiol Nutr Metab. 2012;37(4):646-656. doi: 10.1139/h2012-031. DOI: https://doi.org/10.1139/h2012-031 Google Scholar
Isacco L, Thivel D, Pereira B, Duclos M, Boisseau N. Maximal fat oxidation, but not aerobic capacity, is affected by oral contraceptive use in young healthy women. Eur J Appl Physiol. 2015;115(5):937-945. doi: 10.1007/s00421-014-3075-7. DOI: https://doi.org/10.1007/s00421-014-3075-7 Google Scholar
Olenick AA, Pearson RC, Jenkins NT. Impact of aerobic fitness status, menstrual cycle phase, and oral contraceptive use on exercise substrate oxidation and metabolic flexibility in females. Appl Physiol Nutr Metab. 2023;49(1):93-104. doi: 10.1139/apnm-2023-0101. DOI: https://doi.org/10.1139/apnm-2023-0101 Google Scholar
Schoene RB, Robertson HT, Pierson DJ, Peterson AP. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(6):1300-1305. doi: 10.1152/jappl.1981.50.6.1300. DOI: https://doi.org/10.1152/jappl.1981.50.6.1300 Google Scholar
Dombovy ML, Bonekat HW, Williams TJ, Staats BA. Exercise performance and ventilatory response in the menstrual cycle. Med Sci Sports Exerc. 1987;19(2):111-117. DOI: https://doi.org/10.1249/00005768-198704000-00008 Google Scholar
Schaumberg MA, Stanley J, Jenkins DG, et al. Oral contraceptive use influences on-kinestic adaptations to sprint interval training in recreationally-active women. Front Physiol. 2020;11:629. doi: 10.3389/fphys.2020.00629. DOI: https://doi.org/10.3389/fphys.2020.00629 Google Scholar
Navalta JW, Stone WJ, Lyons TS. Ethical issues relating to scientific discovery in exercise science. Int J Exerc Sci. 2019;12(1):1-8. doi: 10.70252/EYCD6235. DOI: https://doi.org/10.70252/EYCD6235 Google Scholar
American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 11th ed. Wolters Kluwer; 2021. Google Scholar
Heyward VH, Wagner DR. Applied Body Composition Assessment. 2nd ed. Human Kinetics; 2004. Google Scholar
Jukic AMZ, Weinberg CR, Wilcox AJ, McConnaughey DR, Hornsby P, Baird DD. Accuracy of reporting of menstrual cycle length. Am J Epidemiol. 2008;167(1):25-33. doi: 10.1093/aje/kwm265. DOI: https://doi.org/10.1093/aje/kwm265 Google Scholar
Sims ST, Heather AK. Myths and methodologies: Reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp Physiol. 2018;103(10):1309-1317. doi: 10.1113/ep086797. DOI: https://doi.org/10.1113/EP086797 Google Scholar
Mattu AT, Iannetta D, MacInnis MJ, Doyle-Baker PK, Murias JM. Menstrual and oral contraceptive cycle phases do not affect submaximal and maximal exercise responses. Scand J Med Sci Sports. 2020;30(3):472-484. doi: 10.1111/sms.13590. DOI: https://doi.org/10.1111/sms.13590 Google Scholar
Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241-247. doi: 10.1093/ajcn/51.2.241. DOI: https://doi.org/10.1093/ajcn/51.2.241 Google Scholar
Subar AF, Thompson FE, Kipnis V, et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am J Epidemiol. 2001;154(12):1089-1099. doi: 10.1093/aje/154.12.1089. DOI: https://doi.org/10.1093/aje/154.12.1089 Google Scholar
Burckhardt CS, Anderson KL. The Quality of Life Scale (QOLS): Reliability, validity, and utilization. Health Qual Life Outcomes. 2003;1:60. doi: 10.1186/1477-7525-1-60. DOI: https://doi.org/10.1186/1477-7525-1-60 Google Scholar
Sosnoff JJ, Voudrie SJ, Ebersole KT. The effect of knee joint angle on torque control. J Mot Behav. 2010;42(1):5-10. doi: 10.1080/00222890903269237. DOI: https://doi.org/10.1080/00222890903269237 Google Scholar
Liemohn W, Sharpe G, Wasserman JF. Criterion related validity of the Sit-and-Reach Test. J Strength Cond Res. 1994;8(2):91-94. DOI: https://doi.org/10.1519/00124278-199405000-00006 Google Scholar
Baumgartner TA, Oh S, Chung H, Hales D. Objectivity, reliability, and validity for a Revised Push-Up Test protocol. Meas Phys Educ Exerc Sci. 2002;6(4):225-242. doi: 10.1207/S15327841MPEE0604_2. DOI: https://doi.org/10.1207/S15327841MPEE0604_2 Google Scholar
Wasserman K, Hansen JE, Sue DY, Sringer WW, Whipp BJ. Principles of exercise testing and interpretation: Including pathophysiology and clinical applications. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2004. Google Scholar
Willingham TB, Southern WM, McCully KK. Measuring reactive hyperemia in the lower limb using near-infrared spectroscopy. J Biomed Optics. 2016;21(9):091302. doi: 10.1117/1.JBO.21.9.091302. DOI: https://doi.org/10.1117/1.JBO.21.9.091302 Google Scholar
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-381. DOI: https://doi.org/10.1249/00005768-198205000-00012 Google Scholar
Cho AR, Lee HJ, Kim HJ, et al. Microvascular reactivity measured by dynamic near-infrared spectroscopy following induction of general anesthesia in health patients: Observation of age-related change. Int J Med Sci. 2021;18(5):1096-1103. doi: 10.7150/ijms.52433. DOI: https://doi.org/10.7150/ijms.52433 Google Scholar
Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(2):628-634. doi: 10.1152/jappl.1983.55.2.628. DOI: https://doi.org/10.1152/jappl.1983.55.2.628 Google Scholar
Bemben DA, Boileau RA, Bahr JM, Nelson RA, Misner JE. Effects of oral contraceptives on hormonal and metabolic responses during exercise. Med Sci Sports Exerc. 1992;24(4):434-441. DOI: https://doi.org/10.1249/00005768-199204000-00007 Google Scholar
Quinn KM, Billaut F, Bulmer AC, Minahan CL. Cerebral oxygenation declines but does not impair peak oxygen uptake during incremental cycling in women using oral contraceptives. Eur J Appl Physiol. 2018;118(11):2417-2427. doi: 10.1007/s00421-018-3968-y. DOI: https://doi.org/10.1007/s00421-018-3968-y Google Scholar
Gordon D, Scruton A, Barnes R, Baker J, Prado L, Merzbach V. The effects of menstrual cycle phase on the incidence of plateau at VO₂max and associated cardiorespiratory dynamics. Clin Physiol Funct Imaging. 2018;38(4):689-698. doi: 10.1111/cpf.12469. DOI: https://doi.org/10.1111/cpf.12469 Google Scholar
Bonen A, Haynes FW, Graham TE. Substrate and hormonal responses to exercise in women using oral contraceptives. J Appl Physiol. 1991;70(5):1917-1927. doi: 10.1152/jappl.1991.70.5.1917. DOI: https://doi.org/10.1152/jappl.1991.70.5.1917 Google Scholar
Casazza GA, Jacobs KA, Suh S-H, Miller BF, Horning MA, Brooks GA. Menstrual cycle phase and oral contraceptive effects on triglyceride mobilization during exercise. J Appl Physiol. 2004;97(1):302-309. doi: 10.1152/japplphysiol.00050.2004. DOI: https://doi.org/10.1152/japplphysiol.00050.2004 Google Scholar
Casazza GA, Suh SH, Miller BF, Navazio FM, Brooks GA. Effects of oral contraceptives on peak exercise capacity. J Appl Physiol. 2002;93(5):1698-1702. doi: 10.1152/japplphysiol.00622.2002. DOI: https://doi.org/10.1152/japplphysiol.00622.2002 Google Scholar
Jacobs KA, Casazza GA, Suh SH, Horning MA, Brooks GA. Google Scholar
Fatty acid reesterification but not oxidation is increased by oral contraceptive use in women. J Appl Physiol. 2005;98(5):1720-1731. doi: 10.1152/japplphysiol.00685.2004. DOI: https://doi.org/10.1152/japplphysiol.00685.2004 Google Scholar
Barba-Moreno L, Cupeiro R, Romero-Parra N, Janse de Jonge XAK, Peinado AB. Cardiorespiratory responses to endurance exercise over the menstrual cycle and with oral contraceptive use. J Strength Cond Res. 2022;36(2):392-399. doi: 10.1519/JSC.0000000000003447. DOI: https://doi.org/10.1519/JSC.0000000000003447 Google Scholar
Berend JZ, Brammeier MR, Jones NA, Holliman SC, Hackney AC. Effect of the menstrual cycle phase and diet on blood lactate responses to exercise. Biol Sport. 1994;11(4):241-248. Google Scholar
De Souza MJ, Maguire MS, Rubin KR, Maresh CM. Effects of menstrual phase and amenorrhea on exercise performance in runners. Med Sci Sports Exerc. 1990;22(5):575-580. doi: 10.1249/00005768-199010000-00006. DOI: https://doi.org/10.1249/00005768-199010000-00006 Google Scholar
Broskey NT, Zou K, Dohm GL, Houmard JA. Plasma lactate as a marker for metabolic health. Exerc Sport Sci Rev. 2020;48(3):119-124. doi: 10.1249/jes.0000000000000220. DOI: https://doi.org/10.1249/JES.0000000000000220 Google Scholar
Brooks GA. Lactate: link between glycolytic and oxidative metabolism. Sports Med. 2007;37(4-5):341-343. doi: 10.2165/00007256-200737040-00017. DOI: https://doi.org/10.2165/00007256-200737040-00017 Google Scholar
D’Souza AC, Wageh M, Williams JS, et al. Menstrual cycle hormones and oral contraceptives: A multimethod systems physiology-based review of their impact on key aspects of female physiology. J Appl Physiol. 2023;135(6):1284-1299. doi: 10.1152/japplphysiol.00346.2023. DOI: https://doi.org/10.1152/japplphysiol.00346.2023 Google Scholar
Lynch NJ, Nimmo MA. Effects of menstrual cycle phase and oral contraceptive use on intermittent exercise. Eur J Appl Physiol Occup Physiol. 1998;78(6):565-572. doi: 10.1007/s004210050462. DOI: https://doi.org/10.1007/s004210050462 Google Scholar
Vaiksaar S, Jürimäe J, Mäestu J, et al. No effect of menstrual cycle phase and oral contraceptive use on endurance performance in rowers. J Strength Cond Res. 2011;25(6):1571-1578. doi: 10.1519/JSC.0b013e3181df7fd2. DOI: https://doi.org/10.1519/JSC.0b013e3181df7fd2 Google Scholar
Vaiksaar S, Jürimäe J, Mäestu J, et al. Phase of oral contraceptive cycle and endurance capacity of rowers. Percept Mot Skills. 2011;113(3):764-772. doi: 10.2466/05.06.Pms.113.6.764-772. DOI: https://doi.org/10.2466/05.06.PMS.113.6.764-772 Google Scholar
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Sara A. Garcia, Alyssa A. Olenick, Nathan T. Jenkins, Regis C. Pearson

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.