Oral contraceptives do not impact metabolic and cardiorespiratory response during acute high-intensity rowing interval exercise — a pilot study

Autor

DOI:

https://doi.org/10.55225/hppa.638

Słowa kluczowe:

środki antykoncepcyjne hormonalne, elastyczność metaboliczna, kobieta, ćwiczenia interwałowe o wysokiej intensywności

Abstrakt

Purpose: Increasing prevalence of oral contraceptive (OC) use in physically active females highlights the need for sex-specific exercise metabolism research. This pilot study investigated the influence of chronic OC use on the exercising metabolic and respiratory response during a rowing high-intensity interval exercise (HIIE) protocol in young, healthy, moderately active females.

Methods: Fifteen females [21.9 (3.7) years] were categorized by OC (n = 6) vs. non-oral contraceptive use (NOC) (n = 9). HIIE was four sets of 3 min maximal effort intervals on the rowing ergometer with 3 min rest between intervals and performed during the follicular phase (days 2–10 or inactive pills) of participants’ menstrual cycles. To confirm comparable physical profiles of participants, we collected body fat percentage, fat-free mass, bone mineral density, blood pressure, aerobic fitness, muscular strength and endurance, flexibility, and microvascular function.

Results: Groups were similar in all measures of physical profiles (P > 0.05). Our pilot study showed that OC use or NOC use did not influence the exercising metabolic and cardiorespiratory response to HIIE in young, healthy, moderately active females. Fat oxidation, carbohydrate oxidation, metabolic flexibility, blood lactate concentration, blood glucose, and cardiorespiratory response were similar between groups (P > 0.05).

Conclusion: These findings suggest that there was no significant difference in exercising metabolic and cardiorespiratory response between OC and NOC users.

Statystyka pobrań

Statystyki pobrań nie są jeszcze dostępne

Birch K. Circamensal rhythms in physical performance. Biol Rhythm Res. 2000;31(1):1-14. doi: 10.1076/0929-1016(200002)31:1;1-0;FT001. DOI: https://doi.org/10.1076/0929-1016(200002)31:1;1-0;FT001   Google Scholar

Reilly T. The menstrual cycle and human performance: An overview. Biol Rhythm Res. 2000;31(1):29-40. doi: 10.1076/0929-1016(200002)31:1;1-0;FT029. DOI: https://doi.org/10.1076/0929-1016(200002)31:1;1-0;FT029   Google Scholar

Janse de Jonge X, Thompson B, Han A. Methodological recommendations for menstrual cycle research in sports and exercise. Med Sci Sports Exerc. 2019;51(12):2610-2617. doi: 10.1249/MSS.0000000000002073. DOI: https://doi.org/10.1249/MSS.0000000000002073   Google Scholar

Christin-Maitre S. History of oral contraceptive drugs and their use worldwide. Best Pract Res Clin Endocrinol Metab. 2013;27(1):3-12. doi: 10.1016/j.beem.2012.11.004. DOI: https://doi.org/10.1016/j.beem.2012.11.004   Google Scholar

Martin D, Sale C, Cooper SB, Elliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perform. 2018;13(7):926-932. doi: 10.1123/ijspp.2017-0330. DOI: https://doi.org/10.1123/ijspp.2017-0330   Google Scholar

Oxfeldt M, Dalgaard LB, Jorgensen AA, Hansen M. Hormonal contraceptive use, menstrual dysfunctions, and self-reported side effects in elite athletes in Denmark. Int J Sports Physiol Perform. 2020;15(10):1377-1384. doi: 10.1123/ijspp.2019-0636. DOI: https://doi.org/10.1123/ijspp.2019-0636   Google Scholar

World Anti-Doping Agency. WADA’s 2025 Prohibited List now in force. https://www.wada-ama.org/en/news/wadas-2025-prohibited-list-now-force. Accessed September 12, 2024.   Google Scholar

Daniels K, Abma JC. Current contraceptive status among women aged 15–49: United States, 2017–2019. Hyattsville, MD: National Center for Health Statistics; 2020.   Google Scholar

Oosthuyse T, Strauss JA, Hackney AC. Understanding the female athlete: Molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur J Appl Physiol. 2023;123(3):423-450. doi: 10.1007/s00421-022-05090-3. DOI: https://doi.org/10.1007/s00421-022-05090-3   Google Scholar

Lebrun CM. Effect of the different phases of the menstrual cycle and oral contraceptives on athletic performance. Sports Med. 1993;16(6):400-430. doi: 10.2165/00007256-199316060-00005. DOI: https://doi.org/10.2165/00007256-199316060-00005   Google Scholar

Lebrun CM, Petit MA, McKenzie DC, Taunton JE, Prior JC. Decreased maximal aerobic capacity with use of a triphasic oral contraceptive in highly active women: a randomised controlled trial. Br J Sports Med. 2003;37(4):315-320. doi: 10.1136/bjsm.37.4.315. DOI: https://doi.org/10.1136/bjsm.37.4.315   Google Scholar

Burrows M, Peters CE. The influence of oral contraceptives on athletic performance in female athletes. Sports Med. 2007;37(7):557-574. doi: 10.2165/00007256-200737070-00001. DOI: https://doi.org/10.2165/00007256-200737070-00001   Google Scholar

Thompson B, Almarjawi A, Sculley D, Janse de Jonge X. The effect of the menstrual cycle and oral contraceptives on acute responses and chronic adaptations to resistance training: A systematic review of the literature. Sports Med. 2020;50(1):171-185. doi: 10.1007/s40279-019-01219-1. DOI: https://doi.org/10.1007/s40279-019-01219-1   Google Scholar

Elliott-Sale KJ, McNulty KL, Ansdell P, et al. The effects of oral contraceptives on exericse performance in women: A systematic review and meta-analysis. Sports Med. 2020;50(10):1785-1812. doi: 10.1007/s40279-020-01317-5. DOI: https://doi.org/10.1007/s40279-020-01317-5   Google Scholar

Nolan D, McNulty KL, Manninen M, Egan B. The effect of hormonal contraceptive use on skeletal muscle hypertrophy, power and strength adaptations to resistance exercise training: A systematic reveiw and multilevel meta-analysis. Sports Med. 2024;54(1):105-125. doi: 10.1007/s40279-023-01911-3. DOI: https://doi.org/10.1007/s40279-023-01911-3   Google Scholar

Schumpf LF, Braun C, Peric A, et al. The influence of the menstrual cycle and hormonal contraceptives on cardiorespiratory fitness in physically active women: A systematic review and meta-analysis. Heliyon. 2023;9(6):e17049. doi: 10.1016/j.heliyon.2023.e17049. DOI: https://doi.org/10.1016/j.heliyon.2023.e17049   Google Scholar

Wang Q, Wurtz P, Auro K, et al. Effects of hormonal contraception on systemic metabolism: cross-sectional and longitudinal evidence. Int J Epidemiol. 2016;45(5):1445-1457. doi: 10.1093/ije/dyw147. DOI: https://doi.org/10.1093/ije/dyw147   Google Scholar

Silva-Bermudez LS, Toloza FJK, Perez-Matos MC, de Souza RJ, Banfield L, Vargas-Villanueva A, Mendivil CO. Effects of oral contraceptives on metabolic parameters in adult premenopausal women: A meta-analysis. Endocr Connect. 2020;9(10):978-998. doi: 10.1530/EC-20-0423. DOI: https://doi.org/10.1530/EC-20-0423   Google Scholar

Williams JS, Stone JC, Masood Z, Bostad W, Gibala MJ, MacDonald MJ. The impact of natural menstrual cycle and oral contraceptive pill phase on substrate oxidation during rest and acute submaximal aerobic exercise. J Appl Physiol. 2023;135(3):642-654. doi: 10.1152/japplphysiol.00111.2023. DOI: https://doi.org/10.1152/japplphysiol.00111.2023   Google Scholar

Suh S-H, Casazza GA, Horning MA, Miller BF, Brooks GA. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J Appl Physiol. 2003;4(1):285-294. doi: 10.1152/japplphysiol.00693.2002. DOI: https://doi.org/10.1152/japplphysiol.00693.2002   Google Scholar

Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev. 2018;39(4):489-517. doi: 10.1210/er.2017-00211. DOI: https://doi.org/10.1210/er.2017-00211   Google Scholar

Storlien L, Oakes ND, Kelley DE. Metabolic flexibility. Proc Nutr Soc. 2004;63(2):363-368. doi: 10.1079/PNS2004349. DOI: https://doi.org/10.1079/PNS2004349   Google Scholar

Hackney AC. Menstrual cycle hormonal changes and energy substrate metabolism in exercising women: A perspective. Int J Environ Res Public Health. 2021;18(19):10024. doi: 10.3390/ijerph181910024. DOI: https://doi.org/10.3390/ijerph181910024   Google Scholar

Isacco L, Thivel D, Pelle AM, et al. Oral contraception and energy intake in women: impact on substrate oxidation during exercise. Appl Physiol Nutr Metab. 2012;37(4):646-656. doi: 10.1139/h2012-031. DOI: https://doi.org/10.1139/h2012-031   Google Scholar

Isacco L, Thivel D, Pereira B, Duclos M, Boisseau N. Maximal fat oxidation, but not aerobic capacity, is affected by oral contraceptive use in young healthy women. Eur J Appl Physiol. 2015;115(5):937-945. doi: 10.1007/s00421-014-3075-7. DOI: https://doi.org/10.1007/s00421-014-3075-7   Google Scholar

Olenick AA, Pearson RC, Jenkins NT. Impact of aerobic fitness status, menstrual cycle phase, and oral contraceptive use on exercise substrate oxidation and metabolic flexibility in females. Appl Physiol Nutr Metab. 2023;49(1):93-104. doi: 10.1139/apnm-2023-0101. DOI: https://doi.org/10.1139/apnm-2023-0101   Google Scholar

Schoene RB, Robertson HT, Pierson DJ, Peterson AP. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(6):1300-1305. doi: 10.1152/jappl.1981.50.6.1300. DOI: https://doi.org/10.1152/jappl.1981.50.6.1300   Google Scholar

Dombovy ML, Bonekat HW, Williams TJ, Staats BA. Exercise performance and ventilatory response in the menstrual cycle. Med Sci Sports Exerc. 1987;19(2):111-117. DOI: https://doi.org/10.1249/00005768-198704000-00008   Google Scholar

Schaumberg MA, Stanley J, Jenkins DG, et al. Oral contraceptive use influences on-kinestic adaptations to sprint interval training in recreationally-active women. Front Physiol. 2020;11:629. doi: 10.3389/fphys.2020.00629. DOI: https://doi.org/10.3389/fphys.2020.00629   Google Scholar

Navalta JW, Stone WJ, Lyons TS. Ethical issues relating to scientific discovery in exercise science. Int J Exerc Sci. 2019;12(1):1-8. doi: 10.70252/EYCD6235. DOI: https://doi.org/10.70252/EYCD6235   Google Scholar

American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 11th ed. Wolters Kluwer; 2021.   Google Scholar

Heyward VH, Wagner DR. Applied Body Composition Assessment. 2nd ed. Human Kinetics; 2004.   Google Scholar

Jukic AMZ, Weinberg CR, Wilcox AJ, McConnaughey DR, Hornsby P, Baird DD. Accuracy of reporting of menstrual cycle length. Am J Epidemiol. 2008;167(1):25-33. doi: 10.1093/aje/kwm265. DOI: https://doi.org/10.1093/aje/kwm265   Google Scholar

Sims ST, Heather AK. Myths and methodologies: Reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp Physiol. 2018;103(10):1309-1317. doi: 10.1113/ep086797. DOI: https://doi.org/10.1113/EP086797   Google Scholar

Mattu AT, Iannetta D, MacInnis MJ, Doyle-Baker PK, Murias JM. Menstrual and oral contraceptive cycle phases do not affect submaximal and maximal exercise responses. Scand J Med Sci Sports. 2020;30(3):472-484. doi: 10.1111/sms.13590. DOI: https://doi.org/10.1111/sms.13590   Google Scholar

Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241-247. doi: 10.1093/ajcn/51.2.241. DOI: https://doi.org/10.1093/ajcn/51.2.241   Google Scholar

Subar AF, Thompson FE, Kipnis V, et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am J Epidemiol. 2001;154(12):1089-1099. doi: 10.1093/aje/154.12.1089. DOI: https://doi.org/10.1093/aje/154.12.1089   Google Scholar

Burckhardt CS, Anderson KL. The Quality of Life Scale (QOLS): Reliability, validity, and utilization. Health Qual Life Outcomes. 2003;1:60. doi: 10.1186/1477-7525-1-60. DOI: https://doi.org/10.1186/1477-7525-1-60   Google Scholar

Sosnoff JJ, Voudrie SJ, Ebersole KT. The effect of knee joint angle on torque control. J Mot Behav. 2010;42(1):5-10. doi: 10.1080/00222890903269237. DOI: https://doi.org/10.1080/00222890903269237   Google Scholar

Liemohn W, Sharpe G, Wasserman JF. Criterion related validity of the Sit-and-Reach Test. J Strength Cond Res. 1994;8(2):91-94. DOI: https://doi.org/10.1519/00124278-199405000-00006   Google Scholar

Baumgartner TA, Oh S, Chung H, Hales D. Objectivity, reliability, and validity for a Revised Push-Up Test protocol. Meas Phys Educ Exerc Sci. 2002;6(4):225-242. doi: 10.1207/S15327841MPEE0604_2. DOI: https://doi.org/10.1207/S15327841MPEE0604_2   Google Scholar

Wasserman K, Hansen JE, Sue DY, Sringer WW, Whipp BJ. Principles of exercise testing and interpretation: Including pathophysiology and clinical applications. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2004.   Google Scholar

Willingham TB, Southern WM, McCully KK. Measuring reactive hyperemia in the lower limb using near-infrared spectroscopy. J Biomed Optics. 2016;21(9):091302. doi: 10.1117/1.JBO.21.9.091302. DOI: https://doi.org/10.1117/1.JBO.21.9.091302   Google Scholar

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-381. DOI: https://doi.org/10.1249/00005768-198205000-00012   Google Scholar

Cho AR, Lee HJ, Kim HJ, et al. Microvascular reactivity measured by dynamic near-infrared spectroscopy following induction of general anesthesia in health patients: Observation of age-related change. Int J Med Sci. 2021;18(5):1096-1103. doi: 10.7150/ijms.52433. DOI: https://doi.org/10.7150/ijms.52433   Google Scholar

Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(2):628-634. doi: 10.1152/jappl.1983.55.2.628. DOI: https://doi.org/10.1152/jappl.1983.55.2.628   Google Scholar

Bemben DA, Boileau RA, Bahr JM, Nelson RA, Misner JE. Effects of oral contraceptives on hormonal and metabolic responses during exercise. Med Sci Sports Exerc. 1992;24(4):434-441. DOI: https://doi.org/10.1249/00005768-199204000-00007   Google Scholar

Quinn KM, Billaut F, Bulmer AC, Minahan CL. Cerebral oxygenation declines but does not impair peak oxygen uptake during incremental cycling in women using oral contraceptives. Eur J Appl Physiol. 2018;118(11):2417-2427. doi: 10.1007/s00421-018-3968-y. DOI: https://doi.org/10.1007/s00421-018-3968-y   Google Scholar

Gordon D, Scruton A, Barnes R, Baker J, Prado L, Merzbach V. The effects of menstrual cycle phase on the incidence of plateau at VO₂max and associated cardiorespiratory dynamics. Clin Physiol Funct Imaging. 2018;38(4):689-698. doi: 10.1111/cpf.12469. DOI: https://doi.org/10.1111/cpf.12469   Google Scholar

Bonen A, Haynes FW, Graham TE. Substrate and hormonal responses to exercise in women using oral contraceptives. J Appl Physiol. 1991;70(5):1917-1927. doi: 10.1152/jappl.1991.70.5.1917. DOI: https://doi.org/10.1152/jappl.1991.70.5.1917   Google Scholar

Casazza GA, Jacobs KA, Suh S-H, Miller BF, Horning MA, Brooks GA. Menstrual cycle phase and oral contraceptive effects on triglyceride mobilization during exercise. J Appl Physiol. 2004;97(1):302-309. doi: 10.1152/japplphysiol.00050.2004. DOI: https://doi.org/10.1152/japplphysiol.00050.2004   Google Scholar

Casazza GA, Suh SH, Miller BF, Navazio FM, Brooks GA. Effects of oral contraceptives on peak exercise capacity. J Appl Physiol. 2002;93(5):1698-1702. doi: 10.1152/japplphysiol.00622.2002. DOI: https://doi.org/10.1152/japplphysiol.00622.2002   Google Scholar

Jacobs KA, Casazza GA, Suh SH, Horning MA, Brooks GA.   Google Scholar

Fatty acid reesterification but not oxidation is increased by oral contraceptive use in women. J Appl Physiol. 2005;98(5):1720-1731. doi: 10.1152/japplphysiol.00685.2004. DOI: https://doi.org/10.1152/japplphysiol.00685.2004   Google Scholar

Barba-Moreno L, Cupeiro R, Romero-Parra N, Janse de Jonge XAK, Peinado AB. Cardiorespiratory responses to endurance exercise over the menstrual cycle and with oral contraceptive use. J Strength Cond Res. 2022;36(2):392-399. doi: 10.1519/JSC.0000000000003447. DOI: https://doi.org/10.1519/JSC.0000000000003447   Google Scholar

Berend JZ, Brammeier MR, Jones NA, Holliman SC, Hackney AC. Effect of the menstrual cycle phase and diet on blood lactate responses to exercise. Biol Sport. 1994;11(4):241-248.   Google Scholar

De Souza MJ, Maguire MS, Rubin KR, Maresh CM. Effects of menstrual phase and amenorrhea on exercise performance in runners. Med Sci Sports Exerc. 1990;22(5):575-580. doi: 10.1249/00005768-199010000-00006. DOI: https://doi.org/10.1249/00005768-199010000-00006   Google Scholar

Broskey NT, Zou K, Dohm GL, Houmard JA. Plasma lactate as a marker for metabolic health. Exerc Sport Sci Rev. 2020;48(3):119-124. doi: 10.1249/jes.0000000000000220. DOI: https://doi.org/10.1249/JES.0000000000000220   Google Scholar

Brooks GA. Lactate: link between glycolytic and oxidative metabolism. Sports Med. 2007;37(4-5):341-343. doi: 10.2165/00007256-200737040-00017. DOI: https://doi.org/10.2165/00007256-200737040-00017   Google Scholar

D’Souza AC, Wageh M, Williams JS, et al. Menstrual cycle hormones and oral contraceptives: A multimethod systems physiology-based review of their impact on key aspects of female physiology. J Appl Physiol. 2023;135(6):1284-1299. doi: 10.1152/japplphysiol.00346.2023. DOI: https://doi.org/10.1152/japplphysiol.00346.2023   Google Scholar

Lynch NJ, Nimmo MA. Effects of menstrual cycle phase and oral contraceptive use on intermittent exercise. Eur J Appl Physiol Occup Physiol. 1998;78(6):565-572. doi: 10.1007/s004210050462. DOI: https://doi.org/10.1007/s004210050462   Google Scholar

Vaiksaar S, Jürimäe J, Mäestu J, et al. No effect of menstrual cycle phase and oral contraceptive use on endurance performance in rowers. J Strength Cond Res. 2011;25(6):1571-1578. doi: 10.1519/JSC.0b013e3181df7fd2. DOI: https://doi.org/10.1519/JSC.0b013e3181df7fd2   Google Scholar

Vaiksaar S, Jürimäe J, Mäestu J, et al. Phase of oral contraceptive cycle and endurance capacity of rowers. Percept Mot Skills. 2011;113(3):764-772. doi: 10.2466/05.06.Pms.113.6.764-772. DOI: https://doi.org/10.2466/05.06.PMS.113.6.764-772   Google Scholar

Opublikowane

2025-06-30

Jak cytować

Garcia, S., Olenick, A., Jenkins, N., & Pearson, R. (2025). Oral contraceptives do not impact metabolic and cardiorespiratory response during acute high-intensity rowing interval exercise — a pilot study. Health Promotion & Physical Activity, 30(1), 10–25. https://doi.org/10.55225/hppa.638

Numer

Dział

Artykuł oryginalny