Dieta człowieka XXI wieku — nietolerancje pokarmowe oraz diety eliminacyjne

Autor

DOI:

https://doi.org/10.55225/hppa.529

Słowa kluczowe:

nadwrażliwość pokarmowa, dieta, laktoza, gluten, histamina

Abstrakt

W dynamicznie zmieniającym się świecie i środowisku dieta człowieka podlega licznym zmianom, podobnie jak jakość wybieranych produktów. Coraz częściej do lekarzy trafiają pacjenci zgłaszający dolegliwości ze strony przewodu pokarmowego po spożyciu określonych pokarmów. W tej sytuacji często zaleca się wprowadzenie diety eliminacyjnej, która prowadzona bez nadzoru specjalisty, może mieć różne, negatywne skutki. Rynek spożywczy wychodzi naprzeciw zapotrzebowaniom osób chorych, zwiększając dostępność produktów bezglutenowych czy bezlaktozowych. Niejednokrotnie stwarza to jednak ryzyko pojawiania się „mody” na tego typu produkty, co może mieć negatywne skutki zarówno zdrowotne, społeczne, jak i finansowe dla osób, u których nie ma wskazań do stosowania tego typu diety. Celem pracy jest prezentacja najnowszych rezultatów prac badawczych dotyczących diety współczesnego człowieka, opublikowanych w czasopismach międzynarodowych, dostępnych w bazie PubMed oraz wyszukiwarce Google Schoolar.

W przeglądzie omówiono najczęstsze nietolerancje pokarmowe, ich mechanizmy oraz możliwości leczenia, ze szczególnym uwzględnieniem terapii z zastosowaniem diet eliminacyjnych oraz ich potencjalnych konsekwencji zdrowotnych. Omawiane problemy zdrowotne są związane ze zmianami środowiskowymi i jednocześnie znacząco obniżają jakość życia zmagającymi się z nimi osób.

Statystyka pobrań

Statystyki pobrań nie są jeszcze dostępne

Mielnicka S. Diety eliminacyjne w terapii wybranych schorzeń. J NutriLife. 2020;4. http://www.nutrilife.pl/index.php?art=347. Published 2020. Accessed August 10, 2023.   Google Scholar

Tuck CJ, Biesiekierski JR, Schmid-Grendelmeier P, Pohl D. Food intolerances. Nutrients. 2019;11(7):1684. doi: 10.3390/nu11071684. DOI: https://doi.org/10.3390/nu11071684   Google Scholar

Turnbull JL, Adams HN, Gorard DA. Review article: The diagnosis and management of food allergy and food intolerances. Aliment Pharmacol Ther. 2015;41(1):3-25. doi: 10.1111/apt.12984. DOI: https://doi.org/10.1111/apt.12984   Google Scholar

Stockhorst U, Enck P, Klosterhalfen S. Role of classical conditioning in learning gastrointestinal symptoms. World J Gastroenterol. 2007;13(25):3430-3437. doi: 10.3748/wjg.v13.i25.3430. DOI: https://doi.org/10.3748/wjg.v13.i25.3430   Google Scholar

Caio G. Non-IgE/mixed food allergies and functional gastrointestinal disorder: A common thread between childhood and adulthood. Nutrients. 2022;14(4):835. doi: 10.3390/nu14040835. DOI: https://doi.org/10.3390/nu14040835   Google Scholar

Caminero A, Meisel M, Jabri B, Verdu EF. Mechanisms by which gut microorganisms influence food sensitivities. Nat Rev Gastroenterol Hepatol. 2019;16(1):7-18. doi: 10.1038/s41575-018-0064-z. DOI: https://doi.org/10.1038/s41575-018-0064-z   Google Scholar

De Martinis M, Sirufo MM, Suppa M, Ginaldi L. New perspectives in food allergy. Int J Mol Sci. 2020;21(4):1474. doi: 10.3390/ijms21041474. DOI: https://doi.org/10.3390/ijms21041474   Google Scholar

Iweala OI, Choudhary SK, Commins SP. Food allergy. Curr Gastroenterol Rep. 2018;20(5): 17. doi: 10.1007/s11894-018-0624-y. DOI: https://doi.org/10.1007/s11894-018-0624-y   Google Scholar

Gargano D, Appanna R, Santonicola A, et al. Food allergy and intolerance: A narrative review on nutritional concerns. Nutrients. 2021;13(5):1638. doi: 10.3390/nu13051638. DOI: https://doi.org/10.3390/nu13051638   Google Scholar

Valenta R, Hochwallner H, Linhart B, Pahr S. Food allergies: The basics. Gastroenterology. 2015;148(6):1120-1131. doi: 10.1053/j.gastro.2015.02.006. DOI: https://doi.org/10.1053/j.gastro.2015.02.006   Google Scholar

Catanzaro R, Sciuto M, Marotta F. Lactose intolerance: An update on its pathogenesis, diagnosis, and treatment. Nutr Res. 2021;89:23-34. doi: 10.1016/j.nutres.2021.02.003. DOI: https://doi.org/10.1016/j.nutres.2021.02.003   Google Scholar

Misselwitz B, Butter M, Verbeke K, Fox MR. Update on lactose malabsorption and intolerance: Pathogenesis, diagnosis and clinical management. Gut. 2019;68(11):2080-2091. doi: 10.1136/gutjnl-2019-318404. DOI: https://doi.org/10.1136/gutjnl-2019-318404   Google Scholar

Martinez Vázquez SE, Nogueira de Rojas JR, Remes Troche JM, Coss Adame E, Rivas Ruíz R, Uscanga Domínguez LF. The importance of lactose intolerance in individuals with gastrointestinal symptoms. Rev Gastroenterol Mex. 2020;85(3):321-331. doi: 10.1016/j.rgmx.2020.03.002. DOI: https://doi.org/10.1016/j.rgmxen.2020.03.002   Google Scholar

Silva CJ, Leite IDS, Rodrigues JW, Almeida SP, Nóbrega BP, Sampaio Filho JDR. Analysis of lactose intolerance in students with suggestive symptoms of irritable bowel syndrome. Arq Gastroenterol. 2019;56(3):304-311. doi: 10.1590/S0004-2803.201900000-57. DOI: https://doi.org/10.1590/s0004-2803.201900000-57   Google Scholar

Leszkowicz J, Plata-Nazar K, Szlagatys-Sidorkiewicz A. Can lactose intolerance be a cause of constipation? A narrative review. Nutrients. 2022;14(9):1785. doi: 10.3390/nu14091785. DOI: https://doi.org/10.3390/nu14091785   Google Scholar

D’Auria E, Salvatore S, Pozzi E, et al. Cow’s milk allergy: Immunomodulation by dietary intervention. Nutrients. 2019;11(6):1399. doi: 10.3390/nu11061399. DOI: https://doi.org/10.3390/nu11061399   Google Scholar

Lifschitz C, Szajewska H. Cow’s milk allergy: Evidence-based diagnosis and management for the practitioner. Eur J Pediatr. 2015;174(2):141-150. doi: 10.1007/s00431-014-2422-3. DOI: https://doi.org/10.1007/s00431-014-2422-3   Google Scholar

Linhart B, Freidl R, Elisyutina O, Khaitov M, Karaulov A, Valenta R. Molecular approaches for diagnosis, therapy and prevention of cow’s milk allergy. Nutrients. 2019;11(7):1492. doi: 10.3390/nu11071492. DOI: https://doi.org/10.3390/nu11071492   Google Scholar

De Geyter C, Van de Maele K, Hauser B, Vandenplas Y. Hydrogen and methane breath test in the diagnosis of lactose intolerance. Nutrients. 2021;13(9):3261. doi: 10.3390/nu13093261. DOI: https://doi.org/10.3390/nu13093261   Google Scholar

Szilagyi A, Ishayek N. Lactose intolerance, dairy avoidance, and treatment options. Nutrients. 2018;10(12):1994. doi: 10.3390/nu10121994. DOI: https://doi.org/10.3390/nu10121994   Google Scholar

Savaiano DA, Boushey CJ, McCabe GP. Lactose intolerance symptoms assessed by meta-analysis: A grain of truth that leads to exaggeration. J Nutr. 2006;136(4):1107-1113. doi: 10.1093/jn/136.4.1107. DOI: https://doi.org/10.1093/jn/136.4.1107   Google Scholar

Savaiano DA. Lactose digestion from yogurt: Mechanism and relevance. Am J Clin Nutr. 2014;99(5 Suppl):1251S-1255S. doi: 10.3945/ajcn.113.073023. DOI: https://doi.org/10.3945/ajcn.113.073023   Google Scholar

Comas-Basté O, Sánchez-Pérez S, Veciana-Nogués MT, Latorre-Moratalla M, Vidal-Carou MDC. Histamine intolerance: The current state of the art. Biomolecules. 2020;10(8):1181. doi: 10.3390/biom10081181. DOI: https://doi.org/10.3390/biom10081181   Google Scholar

Eyer-Silva WA, Arteaga Hoyos VP, Nascimento L. Scombroid fish poisoning. Am J Trop Med Hyg. 2022;106(5):1300. doi: 10.4269/ajtmh.21-1345. DOI: https://doi.org/10.4269/ajtmh.21-1345   Google Scholar

Hrubisko M, Danis R, Huorka M, Wawruch M. Histamine intolerance – the more we know the less we know: A review. Nutrients. 2021;13(7):2228. doi: 10.3390/nu13072228. DOI: https://doi.org/10.3390/nu13072228   Google Scholar

Hamada Y, Shinohara Y, Yano M, et al. Effect of the menstrual cycle on serum diamine oxidase levels in healthy women. Clin Biochem. 2013;46(1-2):99-102. doi: 10.1016/j.clinbiochem.2012.10.013. DOI: https://doi.org/10.1016/j.clinbiochem.2012.10.013   Google Scholar

Schnedl WJ, Lackner S, Enko D, Schenk M, Holasek SJ, Mangge H. Evaluation of symptoms and symptom combinations in histamine intolerance. Intest Res. 2019;17(3):427-433. doi: 10.5217/ir.2018.00152. DOI: https://doi.org/10.5217/ir.2018.00152   Google Scholar

Sánchez-Pérez S, Comas-Basté O, Costa-Catala J, et al. The rate of histamine degradation by diamine oxidase is compromised by other biogenic amines. Front Nutr. 2022;9:897028. doi: 10.3389/fnut.2022.897028. DOI: https://doi.org/10.3389/fnut.2022.897028   Google Scholar

Sánchez-Pérez S, Comas-Basté O, Veciana-Nogués MT, Latorre-Moratalla ML, Vidal-Carou MC. Low-histamine diets: Is the exclusion of foods justified by their histamine content? Nutrients. 2021;13(5):1395. doi: 10.3390/nu13051395. DOI: https://doi.org/10.3390/nu13051395   Google Scholar

Sánchez-Pérez S, Comas-Basté O, Rabell-González J, Veciana-Nogués MT, Latorre-Moratalla ML, Vidal-Carou MC. Biogenic amines in plant-origin foods: Are they frequently underestimated in low-histamine diets? Foods. 2018;7(12):205. doi: 10.3390/foods7120205. DOI: https://doi.org/10.3390/foods7120205   Google Scholar

Manzotti G, Breda D, Di Gioacchino M, Burastero SE. Serum diamine oxidase activity in patients with histamine intolerance. Int J Immunopathol Pharmacol. 2016;29(1):105-111. doi: 10.1177/0394632015617170. DOI: https://doi.org/10.1177/0394632015617170   Google Scholar

Comas-Basté O, Luz Latorre- Mortalla ML, Rabell-González J, Veciana-Nogués MT, Vidal-Carou MC. Lyophilised legume sprouts as a functional ingredient for diamine oxidase enzyme supplementation in histamine intolerance. LWT. 2020;125:109201. doi: 10.1016/j.lwt.2020.109201. DOI: https://doi.org/10.1016/j.lwt.2020.109201   Google Scholar

Velázquez-Sámano G, Collado-Chagoya R, Cruz-Pantoja RA, Velasco-Medina AA, Rosales-Guevara J. Reacciones de hipersensibilidad a aditivos alimentarios [Hypersensitivity reactions to food additives]. Rev Alerg Mex. 2019;66(3):329-339. doi: 10.29262/ram.v66i3.613. DOI: https://doi.org/10.29262/ram.v66i3.613   Google Scholar

Witkowski M, Grajeta H, Gomułka K. Hypersensitivity reactions to food additives-preservatives, antioxidants, flavor enhancers. Int J Environ Res Public Health. 2022;19(18):11493. doi: 10.3390/ijerph191811493. DOI: https://doi.org/10.3390/ijerph191811493   Google Scholar

Zhou X, Qiao K, Wu H, Zhang Y. The impact of food additives on the abundance and composition of gut microbiota. Molecules. 2023;28(2):631. doi: 10.3390/molecules28020631. DOI: https://doi.org/10.3390/molecules28020631   Google Scholar

Vitellio P, Celano G, Bonfrate L, Gobbetti M, Portincasa P, De Angelis M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on gut microbiota in patients with lactose intolerance and persisting functional gastrointestinal symptoms: A randomised, double-blind, cross-over study. Nutrients. 2019;11(4):886. doi: 10.3390/nu11040886. DOI: https://doi.org/10.3390/nu11040886   Google Scholar

Andreozzi L, Giannetti A, Cipriani F, Caffarelli C, Mastrorilli C, Ricci G. Hypersensitivity reactions to food and drug additives: Problem or myth? Acta Biomed. 2019;90(3-S):80-90. doi: 10.23750/abm.v90i3-S.8168.   Google Scholar

Roszkowska A, Pawlicka M, Mroczek A, Bałabuszek K, Nieradko-Iwanicka B. Non-celiac gluten sensitivity: A review. Medicina (Kaunas). 2019;55(6):222. doi: 3390/medicina55060222. DOI: https://doi.org/10.3390/medicina55060222   Google Scholar

Cha RR, Kim HJ. [Non-celiac gluten sensitivity]. Korean J Gastroenterol. 2020;75(1):11-16. doi: 10.4166/kjg.2020.75.1.11. DOI: https://doi.org/10.4166/kjg.2020.75.1.11   Google Scholar

Barbaro MR, Cremon C, Wrona D, et al. Non-celiac gluten sensitivity in the context of functional gastrointestinal disorders. Nutrients. 2020;12(12):3735. doi: 10.3390/nu12123735. DOI: https://doi.org/10.3390/nu12123735   Google Scholar

Catassi C, Elli L, Bonaz B, Bouma G, et al. Diagnosis of non-celiac gluten sensitivity (NCGS): The Salerno experts’ criteria. Nutrients. 2015;7(6):4966-4977. doi: 10.3390/nu7064966. DOI: https://doi.org/10.3390/nu7064966   Google Scholar

Dieterich W, Zopf Y. Gluten and FODMAPS-sense of a restriction: When is restriction necessary? Nutrients. 2019;11(8):1957. doi: 10.3390/nu11081957. DOI: https://doi.org/10.3390/nu11081957   Google Scholar

Dieterich W, Schuppan D, Schink M, et al. Influence of low FODMAP and gluten-free diets on disease activity and intestinal microbiota in patients with non-celiac gluten sensitivity. Clin Nutr. 2019;38(2):697-707. doi: 10.1016/j.clnu.2018.03.017. DOI: https://doi.org/10.1016/j.clnu.2018.03.017   Google Scholar

Cárdenas-Torres FI, Cabrera-Chávez F, Figueroa-Salcido OG, Ontiveros N. Non-celiac gluten sensitivity: An update. Medicina (Kaunas). 2021;57(6):526. doi: 10.3390/medicina57060526. DOI: https://doi.org/10.3390/medicina57060526   Google Scholar

Melini V, Melini F. Gluten-free diet: Gaps and needs for a healthier diet. Nutrients. 2019;11(1):170. doi: 10.3390/nu11010170. DOI: https://doi.org/10.3390/nu11010170   Google Scholar

Di Nardo G, Villa MP, Conti L, et al. Nutritional deficiencies in children with celiac disease resulting from a gluten-free diet: A systematic review. Nutrients. 2019;11(7):1588. doi: 10.3390/nu11071588. DOI: https://doi.org/10.3390/nu11071588   Google Scholar

Aljada B, Zohni A, El-Matary W. The gluten-free diet for celiac disease and beyond. Nutrients. 2021;13(11):3993. doi: 110.3390/nu13113993. DOI: https://doi.org/10.3390/nu13113993   Google Scholar

Fedewa A, Rao SS. Dietary fructose intolerance, fructan intolerance and FODMAPs. Curr Gastroenterol Rep. 2014;16(1):370. doi: 10.1007/s11894-013-0370-0. DOI: https://doi.org/10.1007/s11894-013-0370-0   Google Scholar

Popa SL, Pop C, Dumitrascu DL. Diet advice for Crohn’s disease: FODMAP and beyond. Nutrients. 2020;12(12):3751. doi: 10.3390/nu12123751. DOI: https://doi.org/10.3390/nu12123751   Google Scholar

Jordan K, Leithold C. Consider fructose intolerance. Dtsch Arztebl Int. 2021;118(22):378. doi: 10.3238/arztebl.m2021.0198. DOI: https://doi.org/10.3238/arztebl.m2021.0198   Google Scholar

Black CJ, Staudacher HM, Ford AC. Efficacy of a low FODMAP diet in irritable bowel syndrome: Systematic review and network meta-analysis. Gut. 2022;71(6):1117-1126. doi: 10.1136/gutjnl-2021-325214. DOI: https://doi.org/10.1136/gutjnl-2021-325214   Google Scholar

Pessarelli T, Sorge A, Elli L, Costantino A. The low-FODMAP diet and the gluten-free diet in the management of functional abdominal bloating and distension. Front Nutr. 2022;9:1007716. doi: 10.3389/fnut.2022.1007716. DOI: https://doi.org/10.3389/fnut.2022.1007716   Google Scholar

Sultan N, Varney JE, Halmos EP, et al. How to implement the 3-phase FODMAP diet into gastroenterological practice. J Neurogastroenterol Motil. 2022;28(3):343-356. doi: 10.5056/jnm22035. DOI: https://doi.org/10.5056/jnm22035   Google Scholar

Wang J, Yang P, Zhang L, Hou X. A low-FODMAP diet improves the global symptoms and bowel habits of adult IBS patients: A systematic review and meta-analysis. Front Nutr. 2021;8:683191. doi: 10.3389/fnut.2021.683191. DOI: https://doi.org/10.3389/fnut.2021.683191   Google Scholar

Bonetto S, Fagoonee S, Battaglia E, Grassini M, Saracco GM, Pellicano R. Recent advances in the treatment of irritable bowel syndrome. Pol Arch Intern Med. 2021;131(7-8):709-715. doi: 10.20452/pamw.16067. DOI: https://doi.org/10.20452/pamw.16067   Google Scholar

Staudacher HM, Scholz M, Lomer MC, et al. Gut microbiota associations with diet in irritable bowel syndrome and the effect of low FODMAP diet and probiotics. Clin Nutr. 2021;40(4):1861-1870. doi: 10.1016/j.clnu.2020.10.013. DOI: https://doi.org/10.1016/j.clnu.2020.10.013   Google Scholar

Opublikowane

2023-09-12

Jak cytować

Gacoń, E. (2023). Dieta człowieka XXI wieku — nietolerancje pokarmowe oraz diety eliminacyjne. Health Promotion & Physical Activity, 23(2), 21–28. https://doi.org/10.55225/hppa.529

Numer

Dział

Artykuł przeglądowy