Analysis of the effect of camelina oil on the skin after a single use
DOI:
https://doi.org/10.55225/hppa.654Keywords:
vegetable oils, assessment of skin characteristics, corneometry, tevametry, cutanometry, identometryAbstract
The aim of this study was to evaluate the effect of a single application of Camelina sativa oil (also known as false flax oil) on selected skin properties of the medial forearm, including skin hydration, transepidermal water loss (TEWL), and elasticity. The study involved 20 healthy women aged 22–26 years. Skin parameters were assessed four times: at baseline, after inducing a model disruption of the skin barrier using the tape stripping method, and then 1 hour after application of the tested oil on both disrupted and intact skin. Specialized, scientifically certified devices were used, including a corneometer, tewameter, cutometer, and indentometer.
A significant increase in skin hydration was observed following oil application, both on disrupted and intact skin. No effect of Camelina sativa oil on skin barrier function (TEWL) or on elasticity parameters measured with cutometry and indentometry was observed.
The results confirm that camelina oil exhibits rapid moisturizing effects. No reduction in TEWL was observed, suggesting that the tested oil behaves similarly to drying oils. The lack of effect on other biomechanical skin properties after a single application does not rule out potential effects during prolonged use, which would require empirical confirmation in further studies.
Downloads
References
Elias PM. Stratum corneum defensive functions: An integrated view. J Invest Dermatol. 2005;125(2):183-200. doi: 10.1111/j.0022-202X.2005.23668.x. Google Scholar
Proksch E, Brandner JM, Jensen JM. The skin: An indispensable barrier. Exp Dermatol. 2008;17(12):1063-1072. doi: 10.1111/j.1600-0625.2008.00786.x. Google Scholar
Madison KC. Barrier function of the skin: “la raison d'être” of the epidermis. J Invest Dermatol. 2003;121(2):231-241. doi: 10.1046/j.1523-1747.2003.12359.x. Google Scholar
Oliveira R, Ferreira J, Azevedo LF, Almeida IF.An overview of methods to characterize skin type: Focus on visual rating scales and self-report instruments. Cosmetics. 2023; 10(1):14. doi: 10.3390/cosmetics10010014. Google Scholar
Antonov D, Schliemann S, Elsner P. Methods for the assessment of barrier function. Curr Probl Dermatol. 2016;49:61-70. doi: 10.1159/000441546. Google Scholar
Mercurio DG, Segura JH, Demets MB, Maia Campos PM. Clinical scoring and instrumental analysis to evaluate skin types. Clin Exp Dermatol. 2013;38(3):302-309. doi: 10.1111/ced.12105. Google Scholar
Humphrey S, Manson Brown S, Cross SJ, Mehta R. Defining skin quality: Clinical relevance, terminology, and assessment. Dermatol Surg. 2021;47(7):974-981. doi: 10.1097/DSS.0000000000003079. Google Scholar
Sethi A, Kaur T, Malhotra SK, Gambhir ML. Moisturizers: The slippery road. Indian J Dermatol. 2016;61(3):279-287. doi: 10.4103/0019-5154.182427. Google Scholar
Nolan K, Marmur E. Moisturizers: reality and the skin benefits. Dermatol Ther. 2012;25(3):229-233. doi: 10.1111/j.1529-8019.2012.01504.x. Google Scholar
Virani A, Dholaria N, Mohd H. et al. Effect of chemical penetration enhancers on the transdermal delivery of olanzapine in human skin in vitro. AAPS Open. 2024;10:4. doi: 10.1186/s41120-024-00092-1. Google Scholar
Berdick M. The role of fats and oils in cosmetics. J Am Oil Chem Soc. 1972;49(7):406-409. doi: 10.1007/BF02582522. Google Scholar
Zouboulis CC, Hossini AM, Hou X, Wang C, Weylandt KH, Pietzner A. Effects of Moringa oleifera seed oil on cultured human sebocytes in vitro and comparison with other oil types. Int J Mol Sci. 2023;24(12):10332. doi: 10.3390/ijms241210332. Google Scholar
Khan BA, Akhtar N. Clinical and sebumetric evaluation of topical emulsions in the treatment of acne vulgaris. Postepy Dermatol Alergol. 2014;31(4):229-234. doi: 10.5114/pdia.2014.40934. Google Scholar
Moore EM, Wagner C, Komarnytsky S. The Enigma of bioactivity and toxicity of botanical oils for skin care. Front Pharmacol. 2020;11:785. doi: 10.3389/fphar.2020.00785. Google Scholar
Gromadzka J, Wardencki W. Trends in edible vegetable oils analysis. Part A: Determination of different components of edible oils-A review. Pol J Food Nutr Sci. 2011;61(1):33-43. doi: 10.2478/v10222-011-0002-z. Google Scholar
Tian M, Bai Y, Tian H, Zhao X. The Chemicalcomposition and health-promoting benefits of vegetable oils: A review. Molecules. 2023; 28(17):6393. doi: 10.3390/molecules28176393. Google Scholar
Abdalla S, Aroua MK, Gew LT. A Comprehensive review of plant-based cosmetic oils (virgin coconut oil, olive oil, argan oil, and jojoba oil): Chemical and biological properties and their cosmeceutical applications. ACS Omega. 2024;9(44):44019-44032. doi: 10.1021/acsomega.4c04277. Google Scholar
Blaak J, Staib P. An updated review on efficacy and benefits of sweet almond, evening primrose and jojoba oils in skin care applications. Int J Cosmet Sci. 2022;44(1):1-9. doi: 10.1111/ics.12758. Google Scholar
Michalak M, Błońska-Sikora E, Dobros N, Spałek O, Zielińska A, Paradowska K. Bioactive compounds, antioxidant properties, and cosmetic applications of selected cold--pressed plant oils from seeds. Cosmetics. 2024;11(5):153. doi: 10.3390/cosmetics11050153. Google Scholar
Zielińska A, Nowak I. Kwasy tłuszczowe w olejach roślinnych i ich znaczenie w kosmetyce. Chemik. 2014;68(2):103-110. Google Scholar
Sydor M, Kurasiak-Popowska D, Stuper-Szablewska K, Rogoziński T. Camelina sativa: Status quo and future perspectives. Ind Crops Prod. 2022;187:115531. doi: 10.1016/j.indcrop.2022.115531. Google Scholar
Popa AL, Jurcoane Ș, Dumitriu B. Camelina sativa oil - A review. Sci Bull Ser F Biotechnol. 2016;20:160-167. Google Scholar
Arshad M, Mohanty AK, Van Acker R, et al. Valorization of camelina oil to biobased materials and biofuels for new industrial uses: a review. RSC Adv. 2022;12(42):27230-27245. doi: 10.1039/d2ra03253h. Google Scholar
Smulikowska S, Van Nguyen C. Przydatność paszowa nasion i wytłoków rzepakowych w żywieniu drobiu i świń i ich wpływ na jakość produktów zwierzęcych. Rośliny Oleiste. 2003;24. Google Scholar
Belayneh HD, Wehling RL, Reddy AK, Cahoon EB, Ciftci ON. Ethanol‑modified supercritical carbon dioxide extraction of the bioactive lipid components of Camelina sativa seed. J Am Oil Chem Soc. 2017;94(6):855‑865. doi: 10.1007/s11746-017-2993-z. Google Scholar
Belayneh HD, Wehling RL, Cahoon EB, Ciftci ON. Effect of extraction method on the oxidative stability of camelina seed oil studied by differential scanning calorimetry. J Food Sci. 2017;82(3):632-637. doi: 10.1111/1750-3841.13652. Google Scholar
Ibrahim FM. Chemical composition, medicinal impacts and cultivation of Camelina sativa: A review. Int J PharmTech Res. 2015;8(10):114-122. Google Scholar
Berti M, Gesch R, Eynck C, Anderson J, Cermak S. Camelina uses, genetics, genomics, production, and management. Ind Crops Prod. 2016;94:690-710. doi: 10.1016/j.indcrop.2016.09.034. Google Scholar
Hixson SM, Parrish CC, Anderson DM. Effect of replacement of fish oil with camelina (Camelina sativa) oil on growth, lipid class and fatty acid composition of farmed juvenile Atlantic cod (Gadus morhua). Fish Physiol Biochem. 2013;39(6):1441-1456. doi: 10.1007/s10695-013-9798-2. Google Scholar
Moser BR. Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending. Renew Energy. 2016;85:819-825. doi: 10.1016/j.renene.2015.07.040. Google Scholar
Yang J, Caldwell C, Corscadden K, He QS, Li J. An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Ind Crops Prod. 2016;81:162-168. doi: 10.1016/j.indcrop.2015.11.073. Google Scholar
Bertacchi S, Bettiga M, Porro D, Branduardi P. Camelina sativa meal hydrolysate as sustainable biomass for the production of carotenoids by Rhodosporidium toruloides. Biotechnol Biofuels. 2020;13:47. doi: 10.1186/s13068-020-01682-3. Google Scholar
Abramovič H, Abram V. Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol Biotechnol. 2005;43(1):63–70. Google Scholar
Guendouz A, Hannachi A, Benidir M, Fellahi ZEA, Frih B. Agro‑biochemical characterisation of Camelina sativa: A review. Agric Rev. 2022;43(3):278–287. doi: 10.18805/ag.RF‑230. Google Scholar
Ebrahimi A, Chenar HM, Rashidi-Monfared S, Kahrizi D. Enhancing food security via selecting superior camelina (Camelina sativa L.) parents: A positive approach incorporating pheno-morphological traits, fatty acids composition, and tocopherols content. BMC Plant Biol. 2025;25(1):53. doi: 10.1186/s12870-024-06022-3. Google Scholar
Ratusz K, Symoniuk E, Wroniak M, Rudzińska M. Bioactive compounds, nutritional quality and oxidative stability of cold-pressed Camelina sativa (L.) oils. Appl Sci. 2018;8(12):2606. doi: 10.3390/app8122606. Google Scholar
Russo R, Reggiani R. Antinutritive compounds in twelve Camelina sativa genotypes. Am J Plant Sci. 2012;3(10):1408-1412. doi: 10.4236/ajps.2012.310170. Google Scholar
Moser BR. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technology. 2010;22(12):270-273. doi: 10.1002/lite.201000068. Google Scholar
Ratusz K, Popis E, Ciemniewska‑Żytkiewicz H. Oxidative stability of camelina (Camelina sativa L.) oil using pressure differential scanning calorimetry and Rancimat method. J Therm Anal Calorim. 2016;126(1):343-351. doi: 10.1007/s10973-016-5642-0. Google Scholar
Kurasiak-Popowska D, Graczyk M, Przybylska-Balcerek A, Stuper-Szablewska K, Szwajkowska-Michałek L. An analysis of variability in the content of phenolic acids and flavonoids in camelina seeds depending on weather conditions, functional form, and genotypes. Molecules. 2022; 27(11):3364. doi: 10.3390/molecules27113364. Google Scholar
Grajzer M, Szmalcel K, Kuźmiński Ł, Witkowski M, Kulma A, Prescha A. Characteristics and antioxidant potential of cold-pressed oils-possible strategies to improve oil stability. Foods. 2020; 9(11):1630. doi: 10.3390/foods9111630. Google Scholar
Zubr J. Dietary fatty acids and amino acids of Camelina sativa seed. Nutr Food Sci. 2003;33(5):203-206. doi: 10.1111/j.1745-4557.2003.tb00260.x. Google Scholar
Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H. Agronomic evaluation of camelina genotypes selected for seed quality characteristics and yield. Ind Crops Prod. 2007;26(3):270-277. doi: 10.1016/j.indcrop.2007.03.017. Google Scholar
Lademann J, Jacobi U, Surber C, Weigmann HJ, Fluhr JW. The tape stripping procedure—evaluation of some critical parameters. Eur J Pharm Biopharm. 2009;72(2):317-323. doi: 10.1016/j.ejpb.2008.08.008. Google Scholar
Caberlotto E, Cornillon C, Njikeu S, Monot M, Vicic M, Flament F. Synchronized in vivo measurements of skin hydration and trans-epidermal water loss: Exploring their mutual influences. Int J Cosmet Sci. 2019;41(5):437-442. doi: 10.1111/ics.12556. Google Scholar
Samadi A, Nasrollahi SA, Rostami MN, Rezagholi Z, Abolghasemi F, Firooz A. Long-term effects of two 24-hour moisturizing products on skin barrier structure and function: A biometric and molecular study. Health Sci Rep. 2021;4(2):e308. doi: 10.1002/hsr2.308. Google Scholar
Fluhr JW, Wiora G, Nikolaeva DG, Miséry L, Darlenski R. In vivo transepidermal water loss: Validation of a new multi-sensor open chamber water evaporation system Tewameter TM Hex. Skin Res Technol. 2023;29(4):e13307. doi: 10.1111/srt.13307. Google Scholar
Piérard GE, Piérard-Franchimont C. Skin biomechanical properties: Influence of age and chronic exposure to sunlight. Am J Clin Dermatol. 1998;12(1):31-39. Google Scholar
Dzidek A, Czerwińska-Ledwig O, Ziembla A, et al. Impact of raspberry seed oil, sesame oil, and coconut oil on skin in young women. Cosmetics. 2022;9(5):103. doi: 10.3390/cosmetics10060169. Google Scholar
Lin TK, Zhong L, Santiago JL. Anti-Inflammatory and skin barrier repair effects of topical application of some plant oils. Int J Mol Sci. 2017;19(1):70. doi: 10.3390/ijms19010070. Google Scholar
Kieć-Swierczyńska M, Kręcisz B, Chomiczewska D. Substancje uczulające i drażniące w kosmetykach – znaczenie praktyczne dla lekarzy dermatologów i lekarzy medycyny pracy. Medycyna Pracy. 2015;66(1):121-129. Google Scholar
Boucetta KQ, Charrouf Z, Aguenaou H, Derouiche A, Bensouda Y. The effect of dietary and/or cosmetic argan oil on postmenopausal skin elasticity. Clin Interv Aging. 2015;10:339-349. doi: 10.2147/CIA.S71684. Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anna Gogosz, Agata Szlachetka, Anna Kurkiewicz-Piotrowska

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.