Analysis of the effect of camelina oil on the skin after a single use

Authors

  • Anna Gogosz University of Physical Culture in Kraków, Faculty of Rehabilitation, Science Club by Department of Chemistry and Biochemistry, Poland
  • Agata Szlachetka University of Applied Sciences in Tarnow, Faculty of Medicine and Health Sciences, Department of Cosmetology, Poland https://orcid.org/0009-0000-1339-2144
  • Anna Kurkiewicz-Piotrowska University of Physical Culture in Kraków, Faculty of Rehabilitation, Department of Chemistry and Biochemistry, Poland https://orcid.org/0000-0002-9535-173X

DOI:

https://doi.org/10.55225/hppa.654

Keywords:

vegetable oils, assessment of skin characteristics, corneometry, tevametry, cutanometry, identometry

Abstract

The aim of this study was to evaluate the effect of a single application of Camelina sativa oil (also known as false flax oil) on selected skin properties of the medial forearm, including skin hydration, transepidermal water loss (TEWL), and elasticity. The study involved 20 healthy women aged 22–26 years. Skin parameters were assessed four times: at baseline, after inducing a model disruption of the skin barrier using the tape stripping method, and then 1 hour after application of the tested oil on both disrupted and intact skin. Specialized, scientifically certified devices were used, including a corneometer, tewameter, cutometer, and indentometer.
A significant increase in skin hydration was observed following oil application, both on disrupted and intact skin. No effect of Camelina sativa oil on skin barrier function (TEWL) or on elasticity parameters measured with cutometry and indentometry was observed.
The results confirm that camelina oil exhibits rapid moisturizing effects. No reduction in TEWL was observed, suggesting that the tested oil behaves similarly to drying oils. The lack of effect on other biomechanical skin properties after a single application does not rule out potential effects during prolonged use, which would require empirical confirmation in further studies.

Downloads

Download data is not yet available.

Elias PM. Stratum corneum defensive functions: An integrated view. J Invest Dermatol. 2005;125(2):183-200. doi: 10.1111/j.0022-202X.2005.23668.x.   Google Scholar

Proksch E, Brandner JM, Jensen JM. The skin: An indispensable barrier. Exp Dermatol. 2008;17(12):1063-1072. doi: 10.1111/j.1600-0625.2008.00786.x.   Google Scholar

Madison KC. Barrier function of the skin: “la raison d'être” of the epidermis. J Invest Dermatol. 2003;121(2):231-241. doi: 10.1046/j.1523-1747.2003.12359.x.   Google Scholar

Oliveira R, Ferreira J, Azevedo LF, Almeida IF.An overview of methods to characterize skin type: Focus on visual rating scales and self-report instruments. Cosmetics. 2023; 10(1):14. doi: 10.3390/cosmetics10010014.   Google Scholar

Antonov D, Schliemann S, Elsner P. Methods for the assessment of barrier function. Curr Probl Dermatol. 2016;49:61-70. doi: 10.1159/000441546.   Google Scholar

Mercurio DG, Segura JH, Demets MB, Maia Campos PM. Clinical scoring and instrumental analysis to evaluate skin types. Clin Exp Dermatol. 2013;38(3):302-309. doi: 10.1111/ced.12105.   Google Scholar

Humphrey S, Manson Brown S, Cross SJ, Mehta R. Defining skin quality: Clinical relevance, terminology, and assessment. Dermatol Surg. 2021;47(7):974-981. doi: 10.1097/DSS.0000000000003079.   Google Scholar

Sethi A, Kaur T, Malhotra SK, Gambhir ML. Moisturizers: The slippery road. Indian J Dermatol. 2016;61(3):279-287. doi: 10.4103/0019-5154.182427.   Google Scholar

Nolan K, Marmur E. Moisturizers: reality and the skin benefits. Dermatol Ther. 2012;25(3):229-233. doi: 10.1111/j.1529-8019.2012.01504.x.   Google Scholar

Virani A, Dholaria N, Mohd H. et al. Effect of chemical penetration enhancers on the transdermal delivery of olanzapine in human skin in vitro. AAPS Open. 2024;10:4. doi: 10.1186/s41120-024-00092-1.   Google Scholar

Berdick M. The role of fats and oils in cosmetics. J Am Oil Chem Soc. 1972;49(7):406-409. doi: 10.1007/BF02582522.   Google Scholar

Zouboulis CC, Hossini AM, Hou X, Wang C, Weylandt KH, Pietzner A. Effects of Moringa oleifera seed oil on cultured human sebocytes in vitro and comparison with other oil types. Int J Mol Sci. 2023;24(12):10332. doi: 10.3390/ijms241210332.   Google Scholar

Khan BA, Akhtar N. Clinical and sebumetric evaluation of topical emulsions in the treatment of acne vulgaris. Postepy Dermatol Alergol. 2014;31(4):229-234. doi: 10.5114/pdia.2014.40934.   Google Scholar

Moore EM, Wagner C, Komarnytsky S. The Enigma of bioactivity and toxicity of botanical oils for skin care. Front Pharmacol. 2020;11:785. doi: 10.3389/fphar.2020.00785.   Google Scholar

Gromadzka J, Wardencki W. Trends in edible vegetable oils analysis. Part A: Determination of different components of edible oils-A review. Pol J Food Nutr Sci. 2011;61(1):33-43. doi: 10.2478/v10222-011-0002-z.   Google Scholar

Tian M, Bai Y, Tian H, Zhao X. The Chemicalcomposition and health-promoting benefits of vegetable oils: A review. Molecules. 2023; 28(17):6393. doi: 10.3390/molecules28176393.   Google Scholar

Abdalla S, Aroua MK, Gew LT. A Comprehensive review of plant-based cosmetic oils (virgin coconut oil, olive oil, argan oil, and jojoba oil): Chemical and biological properties and their cosmeceutical applications. ACS Omega. 2024;9(44):44019-44032. doi: 10.1021/acsomega.4c04277.   Google Scholar

Blaak J, Staib P. An updated review on efficacy and benefits of sweet almond, evening primrose and jojoba oils in skin care applications. Int J Cosmet Sci. 2022;44(1):1-9. doi: 10.1111/ics.12758.   Google Scholar

Michalak M, Błońska-Sikora E, Dobros N, Spałek O, Zielińska A, Paradowska K. Bioactive compounds, antioxidant properties, and cosmetic applications of selected cold--pressed plant oils from seeds. Cosmetics. 2024;11(5):153. doi: 10.3390/cosmetics11050153.   Google Scholar

Zielińska A, Nowak I. Kwasy tłuszczowe w olejach roślinnych i ich znaczenie w kosmetyce. Chemik. 2014;68(2):103-110.   Google Scholar

Sydor M, Kurasiak-Popowska D, Stuper-Szablewska K, Rogoziński T. Camelina sativa: Status quo and future perspectives. Ind Crops Prod. 2022;187:115531. doi: 10.1016/j.indcrop.2022.115531.   Google Scholar

Popa AL, Jurcoane Ș, Dumitriu B. Camelina sativa oil - A review. Sci Bull Ser F Biotechnol. 2016;20:160-167.   Google Scholar

Arshad M, Mohanty AK, Van Acker R, et al. Valorization of camelina oil to biobased materials and biofuels for new industrial uses: a review. RSC Adv. 2022;12(42):27230-27245. doi: 10.1039/d2ra03253h.   Google Scholar

Smulikowska S, Van Nguyen C. Przydatność paszowa nasion i wytłoków rzepakowych w żywieniu drobiu i świń i ich wpływ na jakość produktów zwierzęcych. Rośliny Oleiste. 2003;24.   Google Scholar

Belayneh HD, Wehling RL, Reddy AK, Cahoon EB, Ciftci ON. Ethanol‑modified supercritical carbon dioxide extraction of the bioactive lipid components of Camelina sativa seed. J Am Oil Chem Soc. 2017;94(6):855‑865. doi: 10.1007/s11746-017-2993-z.   Google Scholar

Belayneh HD, Wehling RL, Cahoon EB, Ciftci ON. Effect of extraction method on the oxidative stability of camelina seed oil studied by differential scanning calorimetry. J Food Sci. 2017;82(3):632-637. doi: 10.1111/1750-3841.13652.   Google Scholar

Ibrahim FM. Chemical composition, medicinal impacts and cultivation of Camelina sativa: A review. Int J PharmTech Res. 2015;8(10):114-122.   Google Scholar

Berti M, Gesch R, Eynck C, Anderson J, Cermak S. Camelina uses, genetics, genomics, production, and management. Ind Crops Prod. 2016;94:690-710. doi: 10.1016/j.indcrop.2016.09.034.   Google Scholar

Hixson SM, Parrish CC, Anderson DM. Effect of replacement of fish oil with camelina (Camelina sativa) oil on growth, lipid class and fatty acid composition of farmed juvenile Atlantic cod (Gadus morhua). Fish Physiol Biochem. 2013;39(6):1441-1456. doi: 10.1007/s10695-013-9798-2.   Google Scholar

Moser BR. Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending. Renew Energy. 2016;85:819-825. doi: 10.1016/j.renene.2015.07.040.   Google Scholar

Yang J, Caldwell C, Corscadden K, He QS, Li J. An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Ind Crops Prod. 2016;81:162-168. doi: 10.1016/j.indcrop.2015.11.073.   Google Scholar

Bertacchi S, Bettiga M, Porro D, Branduardi P. Camelina sativa meal hydrolysate as sustainable biomass for the production of carotenoids by Rhodosporidium toruloides. Biotechnol Biofuels. 2020;13:47. doi: 10.1186/s13068-020-01682-3.   Google Scholar

Abramovič H, Abram V. Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol Biotechnol. 2005;43(1):63–70.   Google Scholar

Guendouz A, Hannachi A, Benidir M, Fellahi ZEA, Frih B. Agro‑biochemical characterisation of Camelina sativa: A review. Agric Rev. 2022;43(3):278–287. doi: 10.18805/ag.RF‑230.   Google Scholar

Ebrahimi A, Chenar HM, Rashidi-Monfared S, Kahrizi D. Enhancing food security via selecting superior camelina (Camelina sativa L.) parents: A positive approach incorporating pheno-morphological traits, fatty acids composition, and tocopherols content. BMC Plant Biol. 2025;25(1):53. doi: 10.1186/s12870-024-06022-3.   Google Scholar

Ratusz K, Symoniuk E, Wroniak M, Rudzińska M. Bioactive compounds, nutritional quality and oxidative stability of cold-pressed Camelina sativa (L.) oils. Appl Sci. 2018;8(12):2606. doi: 10.3390/app8122606.   Google Scholar

Russo R, Reggiani R. Antinutritive compounds in twelve Camelina sativa genotypes. Am J Plant Sci. 2012;3(10):1408-1412. doi: 10.4236/ajps.2012.310170.   Google Scholar

Moser BR. Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technology. 2010;22(12):270-273. doi: 10.1002/lite.201000068.   Google Scholar

Ratusz K, Popis E, Ciemniewska‑Żytkiewicz H. Oxidative stability of camelina (Camelina sativa L.) oil using pressure differential scanning calorimetry and Rancimat method. J Therm Anal Calorim. 2016;126(1):343-351. doi: 10.1007/s10973-016-5642-0.   Google Scholar

Kurasiak-Popowska D, Graczyk M, Przybylska-Balcerek A, Stuper-Szablewska K, Szwajkowska-Michałek L. An analysis of variability in the content of phenolic acids and flavonoids in camelina seeds depending on weather conditions, functional form, and genotypes. Molecules. 2022; 27(11):3364. doi: 10.3390/molecules27113364.   Google Scholar

Grajzer M, Szmalcel K, Kuźmiński Ł, Witkowski M, Kulma A, Prescha A. Characteristics and antioxidant potential of cold-pressed oils-possible strategies to improve oil stability. Foods. 2020; 9(11):1630. doi: 10.3390/foods9111630.   Google Scholar

Zubr J. Dietary fatty acids and amino acids of Camelina sativa seed. Nutr Food Sci. 2003;33(5):203-206. doi: 10.1111/j.1745-4557.2003.tb00260.x.   Google Scholar

Vollmann J, Moritz T, Kargl C, Baumgartner S, Wagentristl H. Agronomic evaluation of camelina genotypes selected for seed quality characteristics and yield. Ind Crops Prod. 2007;26(3):270-277. doi: 10.1016/j.indcrop.2007.03.017.   Google Scholar

Lademann J, Jacobi U, Surber C, Weigmann HJ, Fluhr JW. The tape stripping procedure—evaluation of some critical parameters. Eur J Pharm Biopharm. 2009;72(2):317-323. doi: 10.1016/j.ejpb.2008.08.008.   Google Scholar

Caberlotto E, Cornillon C, Njikeu S, Monot M, Vicic M, Flament F. Synchronized in vivo measurements of skin hydration and trans-epidermal water loss: Exploring their mutual influences. Int J Cosmet Sci. 2019;41(5):437-442. doi: 10.1111/ics.12556.   Google Scholar

Samadi A, Nasrollahi SA, Rostami MN, Rezagholi Z, Abolghasemi F, Firooz A. Long-term effects of two 24-hour moisturizing products on skin barrier structure and function: A biometric and molecular study. Health Sci Rep. 2021;4(2):e308. doi: 10.1002/hsr2.308.   Google Scholar

Fluhr JW, Wiora G, Nikolaeva DG, Miséry L, Darlenski R. In vivo transepidermal water loss: Validation of a new multi-sensor open chamber water evaporation system Tewameter TM Hex. Skin Res Technol. 2023;29(4):e13307. doi: 10.1111/srt.13307.   Google Scholar

Piérard GE, Piérard-Franchimont C. Skin biomechanical properties: Influence of age and chronic exposure to sunlight. Am J Clin Dermatol. 1998;12(1):31-39.   Google Scholar

Dzidek A, Czerwińska-Ledwig O, Ziembla A, et al. Impact of raspberry seed oil, sesame oil, and coconut oil on skin in young women. Cosmetics. 2022;9(5):103. doi: 10.3390/cosmetics10060169.   Google Scholar

Lin TK, Zhong L, Santiago JL. Anti-Inflammatory and skin barrier repair effects of topical application of some plant oils. Int J Mol Sci. 2017;19(1):70. doi: 10.3390/ijms19010070.   Google Scholar

Kieć-Swierczyńska M, Kręcisz B, Chomiczewska D. Substancje uczulające i drażniące w kosmetykach – znaczenie praktyczne dla lekarzy dermatologów i lekarzy medycyny pracy. Medycyna Pracy. 2015;66(1):121-129.   Google Scholar

Boucetta KQ, Charrouf Z, Aguenaou H, Derouiche A, Bensouda Y. The effect of dietary and/or cosmetic argan oil on postmenopausal skin elasticity. Clin Interv Aging. 2015;10:339-349. doi: 10.2147/CIA.S71684.   Google Scholar

Downloads

Published

2025-12-22

How to Cite

Gogosz, A., Szlachetka, A., & Kurkiewicz-Piotrowska, A. (2025). Analysis of the effect of camelina oil on the skin after a single use. Health Promotion & Physical Activity, 32(3), 9–19. https://doi.org/10.55225/hppa.654

Issue

Section

Original article