Dynamics of changes and sexual dimorphism in dynamometric strength of stronger hand based on Cracow Longitudinal Growth Study
DOI:
https://doi.org/10.55225/hppa.690Keywords:
dynamometric strength, somatic characteristics, women, men, sexual dimorphism, longitudinal studyAbstract
The aim of this study was to analyse 18-year changes in dominant handgrip strength and assess sexual dimorphism in this trait among a group of participants from the Cracow Longitudinal Growth Study (KLGS) born between 1970 and 1972. The study was conducted twice—in 2004 (age 32–34) and in 2022 (age 50–52)—among a group of 84 participants (35 women and 49 men).
Handgrip strength was measured using the JAMAR dynamometer, and basic somatic characteristics were also calculated: body mass, body height, BMI (Body Mass Index) and upper limb circumference. The degree of sexual dimorphism was determined using the Mollison Index.
The results showed a significant decrease in mean gripstrength over the 18-year period—by nearly 3 kG in women and over 4 kG in men—with a simultaneous increase in body mass and BMI in both groups. High stability of individual differences in grip strength was found (r ≈ 0.65), meaning that individuals who were stronger at age 32 remained relatively stronger at age 50. Sexual dimorphism, while still evident, was slightly weakened. In women at age 50, the best correlate of grip strength was forearm circumference, while in men, it was body height.
The obtained results confirm that handgrip strength is a stable indicator of strength potential in adulthood, and its decline is a natural part of the aging process. The relationships between strength and somatic characteristics change with age and differ among women and men.
Downloads
References
Tomkinson GR, Lang JJ, Rubín L, et al. International norms for adult handgrip strength: A systematic review of data on 2.4 million adults aged 20 to 100+ years from 69 countries and regions. J Sport Health Sci. 2025;14:101014. doi: 10.1016/j.jshs.2024.101014. Google Scholar
Zaciorski WM. 1970. Kształcenie cech motorycznych sportowca [= Developing Motor Characteristics of Athletes]. Warszawa: Wydawnictwo Sport i Turystyka; 1970. Google Scholar
Ljach W. Kształtowanie zdolności motorycznych dzieci i młodzieży [= Developing Motor Skills in Children and Adolescents]. Warszawa: Centralny Ośrodek Sportu; 2003. Google Scholar
Raczek J. Antropomotoryka. Teoria motoryczności człowieka w zarysie [= An Outline of Human Motor Theory]. Warszawa: Wydawnictwo Lekarskie PZWL; 2010. Google Scholar
Trzaskoma Ł, Trzaskoma Z. Kompleksowe zwiększanie siły mięśniowej sportowców [= Complex Muscle Strength Increase Among Athletes]. Warszawa: Instytut Sportu PIB; 2021. Google Scholar
Ważny Z. 1992. Siła mięśniowa. Charakterystyka siły mięśniowej. Trening. [= Muscle strength. Muscle strength characteristics. Training]. In: Ulatowski T, editor. Teoria sportu. T. 1. Warszawa : Urząd Kultury Fizycznej i Turystyki; 1992. Google Scholar
Bacik B, Zając A, Wilk M, Poprzęcki S, Rzepka R, Mikołajec K, Nowak K. Współczesny trening siły mięśniowej [= Modern Muscle Strength Training]. Katowice: Akademia Wychowania Fizycznego im. Jerzego Kukuczki; 2010. Google Scholar
Osiński W. Zagadnienia motoryczności człowieka [= Issues of Human Motor Skills]. Poznań: Akademia Wychowania Fizycznego im. Eugeniusza Piaseckiego; 1991. Google Scholar
Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech. 2000;50(6):500-509. doi: 10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7. Google Scholar
Malina RM, Bouchard C, Bar-Or O. Growth, Maturation and Physical Activity. 2nd ed. Champaign, IL: Human Kinetics; 2004. Google Scholar
Faigenbaum AD, Myer GD. Resistance training among young athletes: Safety, efficacy and injury prevention effects. Br J Sports Med. 2010;44(1):56-63. doi: 10.1136/bjsm.2009.068098. Google Scholar
Bompa TO, Buzzichelli CA. Periodyzacja treningu siłowego w sporcie [= Periodization of strength training in sports]. Łódź: Wydawnictwo Galaktyka; 2022. Google Scholar
Phillips SM. 2012. Dietary protein requirements and adaptive advantages in athletes. Br J Nutr. 2012;108(Suppl 2):S158-167. doi: 10.1017/S0007114512002516. 2012. Google Scholar
Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339-361, doi: 10.2165/00007256-200535040-00004. Google Scholar
Orzech J. Monografia treningu siły mięśniowej. T. 1: Podstawy treningu siły mięśniowej [= Monograph on Muscle Strength Training. Vol. 1: Basics of Muscle Strength Training]. Tarnów: Wydawnictwo Sport i Rehabilitacja; 1998. Google Scholar
Ważny Z. Leksykon treningu sportowego [= Sports Training Lexicon]. Warszawa: Wydawnictwo AWF; 1994. Google Scholar
World Medical Association. WMA Declaration of Helsinki—ethical principles for medical research involving human participants. https://www.wma.net/policies-post/wma-declaration-of-helsinki/. Published 2024. Accessed September 10, 2025. Google Scholar
Zasadzka E, Strzesak D, Poterska A, Trzmiel T, Pawlaczyk M. Siła uścisku ręki u osób po 65 roku życia [= Hand grip strength in people over 65 years old] Geriatria. 2017;11:117-122. https://www.akademiamedycyny.pl/wp-content/uploads/2017/10/Geriatria_2_2017_4.pdf. Accessed May 31, 2025. Google Scholar
Drozdowski Z. Antropometria w wychowaniu fizycznym [= Anthropometry in Physical Education]. Poznań: Akademia Wychowania Fizycznego im. Eugeniusza Piaseckiego; 1992. Google Scholar
Tejszersa D, Świtoński E, Gzik M, editors. Biomechanika narządu ruchu człowieka [= Biomechanics of the Human Musculoskeletal System]. Gliwice–Radom: Katedra Mechaniki Stosowanej, Wydział Mechaniczno-Technologiczny, Politechnika Śląska; Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – PIB; 2011. Google Scholar
Lang JJ, Prince SA, Merucci K, et al. Cardiorespiratory fitness is a strong and consistent predictor of morbidity and mortality among adults: An overview of meta-analyses representing over 20.9 million observations from 199 unique cohort studies. Br J Sports Med. 2024;58(10):556–566. doi: 10.1136/bjsports-2023-107849. Google Scholar
García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, et al. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: A systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99(10):2100–2113. doi: 10.1016/j.apmr.2018.01.008. Google Scholar
Dębski S, Błażejewski G, Mucha D, Mucha F. 2021. Effectiveness of comprehensive physiotherapy in the postoperative treatment of fracture of the distal epiphysis on the radius and ulna. Promocja Zdrowia i Ekologia. 2021;6:42-50. Google Scholar
Liguori G, editor. ACSM’s guidelines for exercise testing and prescription. 11th ed. Philadelphia : Lippincott Williams & Wilkins; 2021. Google Scholar
Suetta C, Haddock B, Alcazar J, et al. The Copenhagen Sarcopenia Study: Lean mass, strength, power, and physical function in a Danish cohort aged 20–93 years. J Cachexia Sarcopenia Muscle. 2019;10(6):1316-1329. doi: 10.1002/jcsm.12477. Google Scholar
Czajka K, Fugiel J, Posłuszny P, Sławińska-Ochla T. Motoryczność człowieka. Podstawowe zagadnienia z antropomotoryki [= Human Motor Skills. Basic Issues of Anthropomotorics]. Wrocław: MedPharm Polska; 2023. Google Scholar
International Institute for Applied Systems Analysis. https://iiasa.ac.at/. Published 2025. Accessed May 31, 2025. Google Scholar
Vaishya R, Misra A, Vaish A, Ursino N, D’Ambrosi R. Hand grip strength as a proposed new vital sign of health: A narrative review of evidences. J Health Popul Nutr. 2024;4(1):7. doi: 10.1186/s41043-024-00500-y. Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Katarzyna Żuchowska, Ryszard Żarów

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.