Travel to altitude with neurological disorders

(Recommendation of the UIAA Medical Commission)

Authors

  • Corrado Angelini Deptartment of Neurology, University Hospital of Padova, Italy
  • Guido Giardini Neurological Division and Mountain Medicine Service, Aosta Hospital, Italy
  • Marika Falla Center for Mind / Brain Science, University of Trento, Rovereto (TN), Italy

DOI:

https://doi.org/10.5604/01.3001.0015.0506

Keywords:

altitude, mountaineering, migraine, stroke, epilepsy, seizures, Parkinson disease

Abstract

The present review examines several neurological conditions and the problems posed by travelling to high altitude, and in particular whether the underlying disease is likely to worsen. The neurological conditions include migraine and other types of headaches, transient ischemia of the brain, occlusive cerebral artery diseases, intracranial haemorrhage and vascular malformations, intracranial space occupying mass, multiple sclerosis, peripheral neuropathies, neuromuscular disorders, epileptic seizures, dementia and Parkinson’s disease. Attempts will be made to classify the risk posed by each condition and to provide recommendations regarding medical evaluation, advice for or against travelling to altitude and effective prophylactic measures. Some individual cases should only be advised after careful examination and risk evaluation either in an outpatient mountain medicine service or by a physician with knowledge of travelling and high altitude risks. Recent developments in diagnostic methods and treatment of neurological conditions are also mentioned.

Downloads

Download data is not yet available.

Wilson MH, Newman, S, Imray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009;8(2):175-191. doi: 10.1016/S1474-4422(09)70014-6.   Google Scholar

Imray CH, Pattinson KT, Myers S, Chan CW, Hoar H, Brearey S, et al. Intrapulmonary and intracardiac shunting with exercise at altitude. Wilderness Environ Med. 2008;19(3):199-204. doi: 10.1580/07-WEME-BR-162.1.   Google Scholar

Wilson MH, Edsell ME, Davagnanam I, Hirani, SP, Martin, DS, Levett, DZ, et al. Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia – an ultrasound and MRI study. J Cereb Blood Flow Metab. 2011;31(10):2019-2029. doi: 10.1038/jcbfm.2011.81.   Google Scholar

Imray C, Chan C, Stubbings,A, Rhodes H, Patey,S, Wilson MH, et al. Time course variations in the mechanisms by which cerebral oxygen delivery is maintained on exposure to hypoxia/altitude. High Alt Med Biol. 2014;15(1):21-27. doi: 10.1089/ham.2013.1079.   Google Scholar

Serrano-Duenas M. High-altitude headache. Expert Rev Neurother. 2007;7(3):245-248. doi: 10.1586/14737175.7.3.245.   Google Scholar

Ainslie PN, Subudhi AW. Cerebral blood flow at high altitude. High Alt Med Biol. 2014;15(2):133-140. doi: 10.1089/ham.2013.1138.   Google Scholar

Sanchez del Rio M, Moskowitz MA. High altitude headache. In: Roach RC, Wagner PD, Hackett PH, eds. Hypoxia: Into the Next Millenium. New York–London: Kluwer Academic / Plenum Publishers; 1999.   Google Scholar

Jafarian S, Abolfazli R, Gorouhi F, Rezaie S, Lotfi J. Gabapentin for prevention of hypobaric hypoxia-induced headache: randomized double-blind clinical trial. J Neurol Neurosurg Psychiatry. 2008;79(3):321-323. doi: 10.1136/jnnp.2007.124727.   Google Scholar

Gonzalez Garay A, Molano Franco D, Nieto Estrada VH, Marti-Carvajal AJ, Arevalo-Rodriguez I. Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs. Cochrane Database Syst Rev. 2018;3:CD012983. doi: 10.1002/14651858.CD012983.   Google Scholar

Corso G, Bottacchi E, Giardini G, De la Pierre F, Meloni T, Pesenti Campagnoni M, et al. Community-based study of stroke incidence in the Valley of Aosta, Italy. CARe-cerebrovascular Aosta Registry: years 2004-2005. Neuroepidemiology. 2009;32(3):186-195. doi: 10.1159/000195688.   Google Scholar

Clarke CR. Cerebral infarction at extreme altitude [abstract]. In: Sutton JR, Houston CS, Jones NL, eds. Hypoxia, Exercise and Altitude. New York: Liss; 1983:453-454.   Google Scholar

Sharma A, Sharma PD, Malhotra HS, Kaul,J, Pal LS, Das Gupta DJ. Hemiplegia as a manifestation of acute mountain sickness. J Assoc Physicians India. 1990;38(9):662-663.   Google Scholar

Jha SK, Anand AC, Sharma V, Kumar N, Adya CM. Stroke at high altitude: Indian experience. High Alt Med Biol. 2002;3(1):21-27. doi: 10.1089/152702902753639513.   Google Scholar

Niaz A, Nayyar S. Cerebrovascular stroke at high altitude. J Coll Physicians Surg Pak. 2003;13(8):446-448.   Google Scholar

Clarke C. Acute mountain sickness: medical problems associated with acute and subacute exposure to hypobaric hypoxia. Postgrad Med J. 2006;82(973):748-753. doi: 10.1136/pgmj.2006.047662.   Google Scholar

Le Roux G, Larmignat P, Marchal M, Richalet JP. Haemostasis at high altitude. Int J Sports Med. 1992;13(1 Suppl):S49-51. doi: 10.1055/s-2007-1024592.   Google Scholar

Zavanone C, Panebianco M, Yger M, Borden A, Restivo D, Angelini C, et al. Cerebral venous thrombosis at high altitude: A systematic review. Rev Neurol (Paris). 2017;173(4):189-193. doi: 10.1016/j.neurol.2016.11.004.   Google Scholar

Van Osta A, Moraine JJ, Melot C, Mairbaurl H, Maggiorini M, Naeije R. Effects of high altitude exposure on cerebral hemodynamics in normal subjects. Stroke. 2005;36(3):557-560. doi: 10.1161/01.STR.0000155735.85888.13.   Google Scholar

Cauchy E, Larmignat P, Boussuges A, Le Roux G, Charniot JC, Dumas JL, et al. Transient neurological disorders during a simulated ascent of Mount Everest. Aviat Space Environ Med. 2002;73(12):1224-1229.   Google Scholar

Nakanishi K, Tajima F, Nakata Y, Osada H, Sugiyama K, Maruta H, et al. Hypercoagulable state in a hypobaric, hypoxic environment causes non-bacterial thrombotic endocarditis in rats. J Pathol. 1997;181(3):338-346. doi: 10.1002/(SICI)1096-9896(199703)181:3<338::AID-PATH773>3.0.CO;2-4.   Google Scholar

West BH, Fleming RG, Al Hemyari B, Banankhah P, Meyer K, Rozier LH, et al. Relation of patent foramen ovale to acute mountain sickness. Am J Cardiol. 2019; 123(12): 2022-2025. doi: 10.1016/j.amjcard.2019.03.030.   Google Scholar

Woods DR, Allen S, Betts TR, Gardiner D, Montgomery H, Morgan JM, et al. High altitude arrhythmias. Cardiology. 2008;111(4):239-246. doi: 10.1159/000127445.   Google Scholar

Terborg C, Gora F, Weiller C, Rother J. Reduced vasomotor reactivity in cerebral microangiopathy: A study with near-infrared spectroscopy and transcranial Doppler sonography. Stroke. 2000;31(4):924-929. doi: 10.1161/01.str.31.4.924.   Google Scholar

Ficzere A, Varga J, Galuska L, Szabo S, Csiba L. Have the cerebral vessels of recently diagnosed hypertensive patients already been affected? A transcranial Doppler-SPECT study. Eur J Neurol. 2001:8(2 Suppl.):27.   Google Scholar

Fulesdi B, Limburg M, Bereczki D, Michels RP, Neuwirth G, Legemate D, et al. Impairment of cerebrovascular reactivity in long-term type 1 diabetes. Diabetes. 1997;46(11):1840-1845. doi: 10.2337/diab.46.11.1840.   Google Scholar

Silvestrini M, Vernieri F, Pasqualetti P, Matteis M, Passarelli F, Troisi E, et al. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA. 2000;283(16):2122-2127. doi: 10.1001/jama.283.16.2122.   Google Scholar

Giles MF, Rothwell PM. Transient ischaemic attack: Clinical relevance, risk prediction and urgency of secondary prevention. Curr Opin Neurol. 2009;22(1):46-53. doi: 10.1097/WCO.0b013e32831f1977.   Google Scholar

Hill MD, Yiannakoulias N, Jeerakathil T, Tu JV, Svenson LW, Schopflocher DP. The high risk of stroke immediately after transient ischemic attack: A population-based study. Neurology. 2004;62(11):2015-2020. doi: 10.1212/01.wnl.0000129482.70315.2f.   Google Scholar

Johnston SC, Gress DR, Browner WS, Sidney S. Short-term prognosis after emergency department diagnosis of TIA. JAMA. 2000;284(22):2901-2906. doi: 10.1001/jama.284.22.2901.   Google Scholar

Richalet J-P, Herry JP. La consultation de médecine de montagne. In: Médecine de l’alpinisme. Elsevier Masson; 2006:251-272.   Google Scholar

Baumgartner RW, Siegel AM, Hackett PH. Going high with preexisting neurological conditions. High Alt Med Biol. 2007;8(2):108-116. doi: 10.1089/ham.2006.1070.   Google Scholar

Shlim DR, Nepal K, Meijer HJ. Suddenly symptomatic brain tumors at altitude. Ann Emerg Med. 1991;20(3):315-316. doi: 10.1016/s0196-0644(05)80948-5.   Google Scholar

Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345(2):107-114. doi: 10.1056/NEJM200107123450206.   Google Scholar

Bodack MI. Blurred vision during airline flight reveals prolactinoma. Optometry. 2003;74(3):159-172.   Google Scholar

Zrinzo LU, Crocker M, Zrinzo LV, Thomas DG, Watkins L. Commercial flight and patients with intracranial mass lesions: a caveat: Report of two cases. J Neurosurg. 2006;105(4):627-630. doi: 10.3171/jns.2006.105.4.627.   Google Scholar

Mahdavi A, Baradaran N, Nejat F, El Khashab M, Monajemzadeh M. Sudden deterioration due to intra-tumoral hemorrhage of ependymoma of the fourth ventricle in a child during a flight: A case report. J Med Case Rep. 2010;4:143. doi: 10.1186/1752-1947-4-143.   Google Scholar

Hackett PH. Subarachnoid cyst and ascent to high altitude: A problem? High Alt Med Biol. 2000;1(4):337-339. doi: 10.1089/15270290050502417.   Google Scholar

Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34(2):216-222. doi: 10.1097/00005373-199302000-00006.   Google Scholar

Wei L, Chen Z, Xi Q, Wen C, Ye D, Chen X, et al. Elevated hemoglobin concentration affects acute severe head trauma after recovery from surgery of neurologic function in the Tibetan Plateau. World Neurosurg. 2016;86:181-185. doi: 10.1016/j.wneu.2015.09.070.   Google Scholar

Hsieh DT, Warden GI, Butler JM, Nakanishi E, Asano Y. Multiple sclerosis exacerbation associated with high-altitude climbing exposure. Mil Med, 2020;185(7-8):e1322-1325. doi: 10.1093/milmed/usz421.   Google Scholar

Marshall O, Lu H, Brisset JC, Xu F, Liu P, Herbert J, et al. Impaired cerebrovascular reactivity in multiple sclerosis. JAMA Neurol. 2014;71(10):1275-1281. doi: 10.1001/jamaneurol.2014.1668.   Google Scholar

Bruck W, Stadelmann C. The spectrum of multiple sclerosis: new lessons from pathology. Curr Opin Neurol. 2005;18(3):221-224. doi: 10.1097/01.wco.0000169736.60922.20.   Google Scholar

Dicianno BE, Aguila ED, Cooper RA, Pasquin, PF, Clark MJ, Collins DM, et al. Acute mountain sickness in disability and adaptive sports: Preliminary data. J Rehabil Res Dev. 2008;45(4):479-487. doi: 10.1682/jrrd.2007.08.0136.   Google Scholar

Kamaraj DC, Dicianno BE, Cooper RA, Hunter J, Tang JL. Acute mountain sickness in athletes with neurological impairments. J Rehabil Res Dev. 2013;50(2):253-62. doi: 10.1682/jrrd.2012.03.0042.   Google Scholar

Hillebrandt D, Gurtoo A, Küpper T, Richards P, Schoffl V, Shah P, et al. UIAA Medical Commission recommendations for mountaineers, hillwalkers, trekkers, and rock and ice climbers with diabetes. High Alt Med Biol. 2018. doi: 10.1089/ham.2018.0043.   Google Scholar

Paulson HL, Garbern JY, Hoban TF, Krajewski KM, Lewis RA, Fischbeck KH, et al. Transient central nervous system white matter abnormality in X-linked Charcot-Marie-Tooth disease. Ann Neurol. 2002;52(4):429-434. doi: 10.1002/ana.10305.   Google Scholar

Luks AM, Swenson ER. Travel to high altitude with pre-existing lung disease. Eur Respir J. 2007;29(4):770-92. doi: 10.1183/09031936.00052606.   Google Scholar

Daleau P, Morgado DC, Iriarte CA, Desbiens R. New epilepsy seizure at high altitude without signs of acute mountain sickness or high altitude cerebral edema. High Alt Med Biol. 2006;7(1):81-83. doi: 10.1089/ham.2006.7.81.   Google Scholar

Basnyat B. Fatal grand mal seizure in a Dutch trekker. J Travel Med. 1998;5(4):221-222. doi: 10.1111/j.1708-8305.1998.tb00512.x.   Google Scholar

Basnyat B. Seizures at high altitude in a patient on antiseizure medications. Wilderness Environ Med. 2001;12(2):153-154. doi: 10.1580/1080-6032(2001)012[0153:ltte]2.0.co;2.   Google Scholar

Küpper T, Classen J. Single epileptic seizures provoked by high altitude. J Travel Med. 2002;9:94-96.   Google Scholar

Pun M, Guadagni V, Bettauer KM, Drogos LL, Aitken J, Hartmann SE, et al. Effects on cognitive functioning of acute, subacute and repeated exposures to high altitude. Front Physiol. 2018;9:1131. doi: 10.3389/fphys.2018.01131. eCollection 2018.   Google Scholar

Grant I, Heaton RK, McSweeny AJ, Adams KM, Timms RM. Neuropsychologic findings in hypoxemic chronic obstructive pulmonary disease. Arch Intern Med. 1982;142(8):1470-1476.   Google Scholar

Thakur N, Blanc PD, Julian LJ, Yelin EH, Katz PP, Sidney S, et al. COPD and cognitive impairment: The role of hypoxemia and oxygen therapy. Int J Chron Obstruct Pulmon Dis. 2010;5:263-269. doi: 10.2147/copd.s10684.   Google Scholar

Peers C, Dallas ML, Boycott HE, Scragg JL, Pearson HA, Boyle JP. Hypoxia and neurodegeneration. Ann N Y Acad Sci. 2009;1177:169-177. doi: 10.1111/j.1749-6632.2009.05026.x.   Google Scholar

Bagge CN, Henderson VW, Laursen HB, Adelborg K, Olsen M, Madsen NL, Risk of dementia in adults with congenital heart disease: Population-based cohort study. Circulation. 2018;137(18):1912-1920. doi: 10.1161/CIRCULATIONAHA.117.029686.   Google Scholar

Zhang X, Li L, Xie W, Yang D, Heng X, Du Y, et al. Prenatal hypoxia may aggravate the cognitive impairment and Alzheimer’s disease neuropathology in APPSwe/PS1A246E transgenic mice. Neurobiol Aging. 2013;34(3):663-678. doi: 10.1016/j.neurobiolaging.2012.06.012.   Google Scholar

Yan X, Zhang J, Gong Q, Weng X. Adaptive influence of long term high altitude residence on spatial working memory: An fMRI study. Brain Cogn. 2011;77(1):53-59. doi: 10.1016/j.bandc.2011.06.002.   Google Scholar

Hill CM, Dimitriou D, Baya A, Webster R, Gavlak-Dingle J, Lesperance V, et al. Cognitive performance in high-altitude Andean residents compared with low-altitude populations: From childhood to older age. Neuropsychology. 2014;28(5):752-760. doi: 10.1037/neu0000065.   Google Scholar

Davis JE, Wagner DR, Garvin N, Moilanen D, Thorington J, Schall C. Cognitive and psychomotor responses to high-altitude exposure in sea level and high-altitude residents of Ecuador. J Physiol Anthropol. 2015;34:2. doi: 10.1186/s40101-014-0039-x.   Google Scholar

Raina SK, Chander V, Bhardwaj A. Dementia in a tribal landlocked elderly population at high altitude: What explains the lower prevalence? J Neurosci Rural Pract. 2016;7(3):419-422. doi: 10.4103/0976-3147.182775.   Google Scholar

Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183-194. doi: 10.1111/j.1365-2796.2004.01388.x.   Google Scholar

Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(3):126-135. doi: 10.1212/WNL.0000000000004826.   Google Scholar

Serebrovska ZO, Serebrovska TV, Kholin VA, Tumanovska LV, Shysh AM, Pashevin DA, et al. Intermittent hypoxia-hyperoxia training improves cognitive function and decreases circulating biomarkers of Alzheimer’s disease in patients with mild cognitive impairment: A pilot study. Int J Mol Sci. 2019;20(21):5405. doi: 10.3390/ijms20215405.   Google Scholar

Meng SX, Wang B, Li WT. Intermittent hypoxia improves cognition and reduces anxiety-related behavior in APP/PS1 mice. Brain Behav. 2020;10(2):e01513. doi: 10.1002/brb3.1513.   Google Scholar

Luigetti M, Goldsberry GT, Cianfoni A. Brain MRI in global hypoxia-ischemia: A map of selective vulnerability. Acta Neurol Belg. 2012;112(1):105-107. doi: 10.1007/s13760-012-0007-3.   Google Scholar

Qin L, Shu L, Zhong J, Pan H, Guo J, Sun Q, et al. Association of HIF1A and Parkinson’s disease in a Han Chinese population demonstrated by molecular inversion probe analysis. Neurol Sci. 2019;40(9):1927-1931. doi: 10.1007/s10072-019-03905-4.   Google Scholar

Onodera H, Okabe S, Kikuchi Y, Tsuda T, Itoyama Y. Impaired chemosensitivity and perception of dyspnoea in Parkinson’s disease. Lancet. 2000;356(9231):739-740. doi: 10.1016/S0140-6736(00)02638-6.   Google Scholar

Sun HL, Sun BL, Chen DW, Chen Y, Li WW, Xu MY, et al. Plasma alpha-synuclein levels are increased in patients with obstructive sleep apnea syndrome. Ann Clin Transl Neurol. 2019;6(4):788-794. doi: 10.1002/acn3.756.   Google Scholar

Swaminath PV, Ragothaman M, Muthane UB, Udupa SA, Rao SL, Govindappa SS. Parkinsonism and personality changes following an acute hypoxic insult during mountaineering. Mov Disord. 2006;21(8):1296-1297. doi: 10.1002/mds.20941.   Google Scholar

Lokk J. The effects of mountain exercise in Parkinsonian persons: A preliminary study. Arch Gerontol Geriatr. 2000;31(1):19-25. doi: 10.1016/s0167-4943(00)00062-5.   Google Scholar

Sunvisson H, Lokk J, Ericson K, Winblad B, Ekman SL. Changes in motor performance in persons with Parkinson’s disease after exercise in a mountain area. J Neurosci Nurs. 1997;29(4):255-260. doi: 10.1097/01376517-199708000-00007.   Google Scholar

Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251-2261. doi: 10.1007/s00405-020-05965-1.   Google Scholar

Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barre syndrome associated with SARS-CoV-2 infection: Causality or coincidence? Lancet Neurol. 2020;19(5):383-384. doi: 10.1016/S1474-4422(20)30109-5.   Google Scholar

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-690. doi: 10.1001/jamaneurol.2020.1127.   Google Scholar

Beyrouti R, Adams ME, Benjamin L, Cohen H, Farmer SF, Goh YY, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020;91(8):889-891. doi: 10.1136/jnnp-2020-323586.   Google Scholar

Arias-Reyes C, Zubieta-DeUrioste N, Poma-Machicao L, Aliaga-Raduan F, Carvajal-Rodriguez F, Dutschmann M, et al. Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? Respir Physiol Neurobiol. 2020;277:103443. doi: 10.1016/j.resp.2020.103443.   Google Scholar

Xi A, Zhuo M, Dai J, Ding Y, Ma X, Wang X, et al. Epidemiological and clinical characteristics of discharged patients infected with SARS-CoV-2 on the Qinghai Plateau. J Med Virol. 2020;92(11):2528-2535. doi: 10.1002/jmv.26032.   Google Scholar

Pun M, Turner R, Strapazzon G, Brugger H, Swenson ER. Lower incidence of COVID-19 at high altitude: Facts and confounders. High Alt Med Biol. 2020;21(3):217-222. doi: 10.1089/ham.2020.0114.   Google Scholar

Strapazzon G, Hilty MP, Bouzat P, Pratali L, Brugger H, Rauch S. To compare the incomparable: COVID-19 pneumonia and high-altitude disease. Eur Respir J. 2020;55(6): 2001362. doi: 10.1183/13993003.01362-2020.   Google Scholar

Downloads

Published

2021-07-21

How to Cite

Angelini, C., Giardini, G., & Falla, M. (2021). Travel to altitude with neurological disorders: (Recommendation of the UIAA Medical Commission). Health Promotion & Physical Activity, 15(2), 29–39. https://doi.org/10.5604/01.3001.0015.0506

Issue

Section

Original article