The Borg Scale at high altitude
DOI:
https://doi.org/10.5604/01.3001.0014.9500Keywords:
Borg Scale, perceived exertion, high altitude, exercise physiology, exercise testingAbstract
Introduction: The Borg Scale for perceived exertion is well established in science and sport to keep an appropriate level of workload or to rate physical strain. Although it is also often used at moderate and high altitude, it was never validated for hypoxic conditions. Since pulse rate and minute breathing volume at rest are increased at altitude it may be expected that the rating of the same workload is higher at altitude compared to sea level.
Material and methods: 16 mountaineers were included in a prospective randomized design trial. Standardized workload (ergometry) and rating of the perceived exertion (RPE) were performed at sea level, at 3,000 m, and at 4,560 m. For validation of the scale Maloney-Rastogi-test and Bland-Altmann-Plots were used to compare the Borg ratings at each intensity level at the three altitudes; p < 0.05 was defined as significant.
Results: In Bland-Altmann-Plots more than 95% of all Borg ratings were within the interval of 1.96 x standard deviation. There was no significant deviation of the ratings at moderate or high altitude. The correlation between RPE and workload or oxygen uptake was weak.
Conclusion: The Borg Scale for perceived exertion gives valid results at moderate and high altitude – at least up to about 5,000 m. Therefore it may be used at altitude without any modification. The weak correlation of RPE and workload or oxygen uptake indicates that there should be other factors indicating strain to the body. What is really measured by Borg’s Scale should be investigated by a specific study.
Downloads
References
Borg G. Anstrengungsempfinden und körperliche Aktivität. Dt Ärztebl. 2004;101(15):1016-1021. Google Scholar
Lollgen H, Ullmer H-V. Das “Gepräch” während der Ergometrie: Die Borg Skala. Dt Ärztebl. 2004;101(15):A1014-A1-15. Google Scholar
Borg G. Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics; 1998. Google Scholar
Borg G, Noble BJ. Perceived exertion. In: Wilmore, JH, ed. Exercise and Sport Sciences Review. London: Academic Press; 1974:131-153. Google Scholar
Küpper T. [Workload and professional requirements for alpine rescue]. Aachen: RWTH Aachen Technical University, Deptartment of Aerospace Medicine; 2006. Google Scholar
West JB. Limiting factors for exercise at extreme altitudes. Clin Physiol. 1990;10(3):265-272. doi: 10.1111/j.1475-097x.1990.tb00095.x. Google Scholar
Jackson CG, Sharkey BJ. Altitude, training and human performance. Sports Med. 1988;6(5):279-284. doi: 10.2165/00007256-198806050-00003. Google Scholar
Rohmert W, Rutenfranz J. Arbeitswissenschaftliche Beurteilung der Belastung und Beanspruchung an unterschiedlichen industriellen Arbeitsplätzen. Bonn: Bundesminister für Arbeit und Sozialordnung, Referat Öffentlichkeitsarbeit; 1975. Google Scholar
Ulmer HV, Janz U, Löllgen H. Aspects of the validity of BORG’s scale. Is it measuring stress or strain? In: Borg G, ed. Physical Work and Efford. Oxford– New York: Pergamon Press; 1976:181-96. Google Scholar
Hollmann W, Hettinger T. Sportmedizin, Grundlagen für Arbeit, Training und Präventivmedizin. Stuttgart: Schattauer; 2000. Google Scholar
Li G, Taljaard M, Van den Heuvel ER, et al. An introduction to multiplicity issues in clinical trials: the what, why, when and how. Int J Epidemiol. 2017;46(2):746-755. doi: 10.1093/ije/dyw320. Google Scholar
Horvath SM, Agnew JW, Wagner JA. Maximal aerobic capacity at several ambient concentrations of carbon monoxide at several altitudes. Cambridge, MA: Health Effects Institute; 1988:1-27. Google Scholar
Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69(8):793-801. Google Scholar
Lollgen H. Das Anstrengungsempfinden (RPE, Borg Skala). Dtsch Z Sportmed. 2004;55(11):299-300. Google Scholar
Suto T, Saito S, Tobe M, Kanamoto M, Matsui Y. Reduction of arterial oxygen saturation among rescuers during cardiopulmonary resuscitation in a hypobaric hypoxic environment. Wilderness Environ Med. 2020;31(1):97-100. doi: 10.1016/j.wem.2019.10.008. Google Scholar
Schneider SR, Mayer LC, Lichtblau M, et al. Effect of normobaric hypoxia on exercise performance in pulmonary hypertension: Randomized trial. Chest, 2021;159(2):757-771. doi: 10.1016/j.chest.2020.09.004. Google Scholar
Abel A, Baron B, Grappe F, Francaux M. Effect of environmental feedbacks on pacing strategy and affective load during a self-paced 30 min cycling time trial. J Sports Sci. 2019;37(3):291-297. doi: 10.1080/02640414.2018.1497934. Google Scholar
Sato T, Takazawa T, Inoue M, et al. Cardiorespiratory dynamics of rescuers during cardiopulmonary resuscitation in a hypoxic environment. Am J Emerg Med. 2018;36(9):1561-1564. doi: 10.1016/j.ajem.2018.01.029. Google Scholar
Nakano T, Iwazaki M, Sasao G, et al. Hypobaric hypoxia is not a direct dyspnogenic factor in healthy individuals at rest. Respir Physiol Neurobiol. 2015;218:28-31. doi: 10.1016/j.resp.2015.07.009. Google Scholar
Narahara H, Kimura M, Suto T, et al. Effects of cardiopulmonary resuscitation at high altitudes on the physical condition of untrained and unacclimatized rescuers. Wilderness Environ Med. 2012;23(2):161-164. doi: 10.1016/j.wem.2012.02.001. Google Scholar
Aliverti A, Kayser B, Mauro AL, et al. Respiratory and leg muscles perceived exertion during exercise at altitude. Respir Physiol Neurobiol. 2011;177(2):162-168. doi: 10.1016/j.resp.2011.03.014. Google Scholar
Lomax M. Inspiratory muscle training, altitude, and arterial oxygen desaturation: A preliminary investigation. Aviat Space Environ Med. 2011;81(5):498-501. doi: 10.3357/asem.2718.2010. Google Scholar
Pirenne J, Van Gelder F, Kharkevitch T, et al. Tolerance of liver transplant patients to strenuous physical activity in high-altitude. Am J Transplant. 2004;4(4):554-560. doi: 10.1111/j.1600-6143.2004.00363.x. Google Scholar
Haunolder M. [Trekkers with preexisting cardiopulmonary diseases in the Everest region]. Aachen: RWTH Aachen Technical University, Institute for Occupational and Social Medicine; 2021. Google Scholar
Schmitz S. [Trekkers with non-cardiopulmonary preexisting diseases in the Everest region]. Aachen: RWTH Aachen Technical University, Institute of Occupational and Social Medicine; 2018. Google Scholar
Scharfenberg C. [First aid knowledge of trekkers]. Aachen: RWTH Aachen Technical University, Institute of Occupational and Social Medicine, 2013. Aachen. Google Scholar
Lechner K. [Risk management of trekkers]. Aachen: RWTH Aachen University, Institute of Occupational and Social Medicine; 2013. Google Scholar
Townsend NE, Gore CJ, Ebert TR, Martin DT, Hahn AG, Chow C-M. Ventilatory acclimatisation is beneficial for high-intensity exercise at altitude in elite cyclists. Eur J Sport Sci. 2016;16(8):895-902. doi: 10.1080/17461391.2016.1139190. Google Scholar
Thomas A. Hypoxaemie beim Höhenaufenthalt über 3000 m – Risikofaktor für Innere Erkrankungen. In: 12. Internationale Bergrettungsärztetagung 1991. Innsbruck: Eigenverlag G. Flora; 1991. Google Scholar
Ernsting J, King P. Aviation Medicine. 2nd ed. London: Butterworth; 1988. Google Scholar
Savourey G, Launay JC, Besnard Y, et al. Normo or hypobaric hypoxic tests: propositions for the determination of the individual susceptibility to altitude illnesses. Eur J Appl Physiol. 2007;100(2):193-205. doi: 10.1007/s00421-007-0417-8. Google Scholar
Savourey G, Launay JC, Besnard Y, Guinet A, Travers S. Normo- and hypobaric hypoxia: Are there any physiological differences? Eur J Appl Physiol. 2003;89(2):122-126. doi: 10.1007/s00421-002-0789-8. Google Scholar
Barcroft J. Respiratory Function of the Blood. Part I. New York: Cambridge University Press; 1925. Google Scholar
Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23(2):259-267. doi: 10.1152/jappl.1967.23.2.259. Google Scholar
Hansen, JE Stelter, GP Vogel JA. Arterial pyruvate, lactate, pH, and PCO2 during work at sea level and high altitude. J Appl Physiol. 1967;23(4):523-530. doi: 10.1152/jappl.1967.23.4.523. Google Scholar
Dill DB, Myhre G, Phillips EE, Brown DK. Work capacity in acute exposures to altitude. J Appl Physiol. 1966;21(4):1168-1176. doi: 10.1152/jappl.1966.21.4.1168. Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 University of Applied Sciences in Tarnow, Poland
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.