The Borg Scale at high altitude

Authors

  • Thomas Küpper Institute of Occupational and Social Medicine, RWTH Aachen Technical University, Aachen, Germany; Medical Commission of the Union Internationale des Associations d’Alpinisme (UIAA), Bern, Switzerland
  • N. Heussen Department of Medical Statistics, RWTH Aachen Technical University, Aachen, Germany
  • Audry Morrison Royal Free London NHS Foundation Trust, London, UK
  • Volker Schöffl Medical Commission of the Union Internationale des Associations d’Alpinisme (UIAA), Bern, Switzerland; Department of Trauma and Orthopedic Surgery, Klinikum Bamberg, Germany; Department of Trauma Surgery, Friedrich Alexander University Erlangen-Nuremberg, Germany
  • Buddha Basnyat Nepal International Clinic, Kathmandu, Nepal
  • David Hillebrandt Medical Commission of the Union Internationale des Associations d’Alpinisme (UIAA), Bern, Switzerland
  • Jim Milledge Medical Commission of the Union Internationale des Associations d’Alpinisme (UIAA), Bern, Switzerland; CASE Medicine, UCL, Institute of Child Health, 30 Guildford St. London WC1N 1EH, UK
  • Jürgen Steffgen Department of Nephrology and Rheumatology; University of Göttingen, Germany
  • Beate Meier Institute of Occupational and Social Medicine, RWTH Aachen Technical University, Aachen, Germany; Department of Intensive Care Medicine and Intermediate Care, RWTH Aachen Technical University, Aachen, Germany; Department of Anesthesiology, RWTH Aachen Technical University, Aachen, Germany

DOI:

https://doi.org/10.5604/01.3001.0014.9500

Keywords:

Borg Scale, perceived exertion, high altitude, exercise physiology, exercise testing

Abstract

Introduction: The Borg Scale for perceived exertion is well established in science and sport to keep an appropriate level of workload or to rate physical strain. Although it is also often used at moderate and high altitude, it was never validated for hypoxic conditions. Since pulse rate and minute breathing volume at rest are increased at altitude it may be expected that the rating of the same workload is higher at altitude compared to sea level.
Material and methods: 16 mountaineers were included in a prospective randomized design trial. Standardized workload (ergometry) and rating of the perceived exertion (RPE) were performed at sea level, at 3,000 m, and at 4,560 m. For validation of the scale Maloney-Rastogi-test and Bland-Altmann-Plots were used to compare the Borg ratings at each intensity level at the three altitudes; p < 0.05 was defined as significant.
Results: In Bland-Altmann-Plots more than 95% of all Borg ratings were within the interval of 1.96 x standard deviation. There was no significant deviation of the ratings at moderate or high altitude. The correlation between RPE and workload or oxygen uptake was weak.
Conclusion: The Borg Scale for perceived exertion gives valid results at moderate and high altitude – at least up to about 5,000 m. Therefore it may be used at altitude without any modification. The weak correlation of RPE and workload or oxygen uptake indicates that there should be other factors indicating strain to the body. What is really measured by Borg’s Scale should be investigated by a specific study.

Downloads

Download data is not yet available.

Borg G. Anstrengungsempfinden und körperliche Aktivität. Dt Ärztebl. 2004;101(15):1016-1021.   Google Scholar

Lollgen H, Ullmer H-V. Das “Gepräch” während der Ergometrie: Die Borg Skala. Dt Ärztebl. 2004;101(15):A1014-A1-15.   Google Scholar

Borg G. Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics; 1998.   Google Scholar

Borg G, Noble BJ. Perceived exertion. In: Wilmore, JH, ed. Exercise and Sport Sciences Review. London: Academic Press; 1974:131-153.   Google Scholar

Küpper T. [Workload and professional requirements for alpine rescue]. Aachen: RWTH Aachen Technical University, Deptartment of Aerospace Medicine; 2006.   Google Scholar

West JB. Limiting factors for exercise at extreme altitudes. Clin Physiol. 1990;10(3):265-272. doi: 10.1111/j.1475-097x.1990.tb00095.x.   Google Scholar

Jackson CG, Sharkey BJ. Altitude, training and human performance. Sports Med. 1988;6(5):279-284. doi: 10.2165/00007256-198806050-00003.   Google Scholar

Rohmert W, Rutenfranz J. Arbeitswissenschaftliche Beurteilung der Belastung und Beanspruchung an unterschiedlichen industriellen Arbeitsplätzen. Bonn: Bundesminister für Arbeit und Sozialordnung, Referat Öffentlichkeitsarbeit; 1975.   Google Scholar

Ulmer HV, Janz U, Löllgen H. Aspects of the validity of BORG’s scale. Is it measuring stress or strain? In: Borg G, ed. Physical Work and Efford. Oxford– New York: Pergamon Press; 1976:181-96.   Google Scholar

Hollmann W, Hettinger T. Sportmedizin, Grundlagen für Arbeit, Training und Präventivmedizin. Stuttgart: Schattauer; 2000.   Google Scholar

Li G, Taljaard M, Van den Heuvel ER, et al. An introduction to multiplicity issues in clinical trials: the what, why, when and how. Int J Epidemiol. 2017;46(2):746-755. doi: 10.1093/ije/dyw320.   Google Scholar

Horvath SM, Agnew JW, Wagner JA. Maximal aerobic capacity at several ambient concentrations of carbon monoxide at several altitudes. Cambridge, MA: Health Effects Institute; 1988:1-27.   Google Scholar

Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med. 1998;69(8):793-801.   Google Scholar

Lollgen H. Das Anstrengungsempfinden (RPE, Borg Skala). Dtsch Z Sportmed. 2004;55(11):299-300.   Google Scholar

Suto T, Saito S, Tobe M, Kanamoto M, Matsui Y. Reduction of arterial oxygen saturation among rescuers during cardiopulmonary resuscitation in a hypobaric hypoxic environment. Wilderness Environ Med. 2020;31(1):97-100. doi: 10.1016/j.wem.2019.10.008.   Google Scholar

Schneider SR, Mayer LC, Lichtblau M, et al. Effect of normobaric hypoxia on exercise performance in pulmonary hypertension: Randomized trial. Chest, 2021;159(2):757-771. doi: 10.1016/j.chest.2020.09.004.   Google Scholar

Abel A, Baron B, Grappe F, Francaux M. Effect of environmental feedbacks on pacing strategy and affective load during a self-paced 30 min cycling time trial. J Sports Sci. 2019;37(3):291-297. doi: 10.1080/02640414.2018.1497934.   Google Scholar

Sato T, Takazawa T, Inoue M, et al. Cardiorespiratory dynamics of rescuers during cardiopulmonary resuscitation in a hypoxic environment. Am J Emerg Med. 2018;36(9):1561-1564. doi: 10.1016/j.ajem.2018.01.029.   Google Scholar

Nakano T, Iwazaki M, Sasao G, et al. Hypobaric hypoxia is not a direct dyspnogenic factor in healthy individuals at rest. Respir Physiol Neurobiol. 2015;218:28-31. doi: 10.1016/j.resp.2015.07.009.   Google Scholar

Narahara H, Kimura M, Suto T, et al. Effects of cardiopulmonary resuscitation at high altitudes on the physical condition of untrained and unacclimatized rescuers. Wilderness Environ Med. 2012;23(2):161-164. doi: 10.1016/j.wem.2012.02.001.   Google Scholar

Aliverti A, Kayser B, Mauro AL, et al. Respiratory and leg muscles perceived exertion during exercise at altitude. Respir Physiol Neurobiol. 2011;177(2):162-168. doi: 10.1016/j.resp.2011.03.014.   Google Scholar

Lomax M. Inspiratory muscle training, altitude, and arterial oxygen desaturation: A preliminary investigation. Aviat Space Environ Med. 2011;81(5):498-501. doi: 10.3357/asem.2718.2010.   Google Scholar

Pirenne J, Van Gelder F, Kharkevitch T, et al. Tolerance of liver transplant patients to strenuous physical activity in high-altitude. Am J Transplant. 2004;4(4):554-560. doi: 10.1111/j.1600-6143.2004.00363.x.   Google Scholar

Haunolder M. [Trekkers with preexisting cardiopulmonary diseases in the Everest region]. Aachen: RWTH Aachen Technical University, Institute for Occupational and Social Medicine; 2021.   Google Scholar

Schmitz S. [Trekkers with non-cardiopulmonary preexisting diseases in the Everest region]. Aachen: RWTH Aachen Technical University, Institute of Occupational and Social Medicine; 2018.   Google Scholar

Scharfenberg C. [First aid knowledge of trekkers]. Aachen: RWTH Aachen Technical University, Institute of Occupational and Social Medicine, 2013. Aachen.   Google Scholar

Lechner K. [Risk management of trekkers]. Aachen: RWTH Aachen University, Institute of Occupational and Social Medicine; 2013.   Google Scholar

Townsend NE, Gore CJ, Ebert TR, Martin DT, Hahn AG, Chow C-M. Ventilatory acclimatisation is beneficial for high-intensity exercise at altitude in elite cyclists. Eur J Sport Sci. 2016;16(8):895-902. doi: 10.1080/17461391.2016.1139190.   Google Scholar

Thomas A. Hypoxaemie beim Höhenaufenthalt über 3000 m – Risikofaktor für Innere Erkrankungen. In: 12. Internationale Bergrettungsärztetagung 1991. Innsbruck: Eigenverlag G. Flora; 1991.   Google Scholar

Ernsting J, King P. Aviation Medicine. 2nd ed. London: Butterworth; 1988.   Google Scholar

Savourey G, Launay JC, Besnard Y, et al. Normo or hypobaric hypoxic tests: propositions for the determination of the individual susceptibility to altitude illnesses. Eur J Appl Physiol. 2007;100(2):193-205. doi: 10.1007/s00421-007-0417-8.   Google Scholar

Savourey G, Launay JC, Besnard Y, Guinet A, Travers S. Normo- and hypobaric hypoxia: Are there any physiological differences? Eur J Appl Physiol. 2003;89(2):122-126. doi: 10.1007/s00421-002-0789-8.   Google Scholar

Barcroft J. Respiratory Function of the Blood. Part I. New York: Cambridge University Press; 1925.   Google Scholar

Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23(2):259-267. doi: 10.1152/jappl.1967.23.2.259.   Google Scholar

Hansen, JE Stelter, GP Vogel JA. Arterial pyruvate, lactate, pH, and PCO2 during work at sea level and high altitude. J Appl Physiol. 1967;23(4):523-530. doi: 10.1152/jappl.1967.23.4.523.   Google Scholar

Dill DB, Myhre G, Phillips EE, Brown DK. Work capacity in acute exposures to altitude. J Appl Physiol. 1966;21(4):1168-1176. doi: 10.1152/jappl.1966.21.4.1168.   Google Scholar

Downloads

Published

2021-06-18

How to Cite

Küpper, T., Heussen, . N., Morrison, A., Schöffl, V., Basnyat, B., Hillebrandt, D., Milledge, J., Steffgen, J., & Meier, B. (2021). The Borg Scale at high altitude. Health Promotion & Physical Activity, 15(2), 1–8. https://doi.org/10.5604/01.3001.0014.9500

Issue

Section

Original article

Most read articles by the same author(s)

1 2 3 > >>