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Abstract

This paper presents a discussion on the application of two swarm intelligence algo-
rithms, Cuckoo Search (CS) and Firefly Algorithm (FA), to maximize the reliability 
of two complex systems with resource constraints, which have been well-known in 
the literature. The reliability of the systems is also evaluated using several classical 
methods. The results indicate that although the CS algorithm, which utilizes Lévy flight, 
is eective, the FA rey algorithm outperformed it in the presented optimization tasks, 
within the given parameter range. These ndings contribute to the ongoing discussion 
on using nature-inspired algorithms for solving Reliability Redundancy Allocation 
Problem (RRAP) problems, and the two test scenarios used in the study can be useful 
for validating other algorithms in RRAP problems. The paper introduces metrics 
and methods for analyzing and comparing the performance of algorithms in RRAP 
optimization, including the comparison of criterion function values and other param-
eters introduced in the paper. Additionally, the paper discusses statistical analyses of 
variance (ANOVA) with post-hoc RIR Tuckey tests.
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1. Introduction
The concept of reliability in non-renewable objects re-
fers to their ability to maintain the required properties 
for their intended purpose [1]. Optimizing reliability 
can involve increasing safety or reducing costs by de-
creasing reliability. To enhance reliability, each com-
ponent of the system can be improved, or redundancy 
can be introduced to individual subsystems. Design-
ing an extremely reliable system requires balanced 
approach that considers price, weight, volume, and 
lifetime when introducing redundant elements. This 
type of non-linear design with resource constraints is 
known as the Reliability Redundancy Allocation Prob-
lem (RRAP), which is a type of NP-hard problem. The 
optimization task involves allocating system compo-
nents (number of elements, reliability level) to maxi-
mize total reliability while satisfying the constraints. Re-
dundancy is desirable and can be protected in the event 
of a system failure. Critical components can be dupli-
cated, or several components can be used in parallel to 
avoid system breakdown. For example, in engineering, 
parallel operation of temperature sensor contacts or re-
dundant devices in the power grid can enhance reliabil-
ity. In computing, the use of RAID (Redundant Array of 
Independent Disks) disk arrays can increase system re-
liability. In this study, we aim to determine the number 
of redundant components and their reliability values in 
each subsystem to maximize the system’s total eliability                              
while adhering to the system design constraints using 
the Reliability Redundancy Allocation Problem (RRAP).

To address this problem, we utilized two heuris-
tic algorithms inspired by social behavior in animals, 
namely the Cuckoo Search (CS) algorithm and the Fire-
fly Algorithm (FA) for non-linear design with resource 
constraints optimization problems [2]. The effciency of 
these algorithms was evaluated by applying them to two 
different scenarios [3–5].

Recent studies have shown that the CS algorithm is as 
effective as other popular algorithms such as PSO (Par-
ticle Swarm Optimization) and genetic algorithms [6]. 
However, the FA algorithm proved to be more effective 
for the optimization tasks presented in this study within 
the considered parameter range.

Swarm optimization algorithms have also been suc-
cessfully applied to reliability optimization in power grid 
systems, where a reliability function is represented us-
ing various methods such as Binary Decision Diagrams 
(BDDs), Edge Expansion Diagrams (EEDs), Composition 
After Expansion (CAE), and fixed-sink algorithms for 
k-terminal networks [7–9].

Based on the literature compilation [2,5], other algo-
rithms such as Simulated Annealing (SA) [10], Particle 
Swarm Optimization (PSO) [11], Modied Particle Swarm 
Optimization (MPSO) [12], Articial Bee Colony (ABC) [13], 
CS-GA [14], BAT (Bat algorithm) [15], ACO (Ant Colony 
Optimization) [16], Enhanced Nest Cuckoo Optimiza-
tion Algorithm [17], Grey Wolf Optimization Algorithm 
(GWO) [18,19] and the results presented in the works 
[13,20–28] were not as good as those obtained using the 
FA algorithm. However, the question remains open as to 
whether other algorithms could lead to different global 
maximum solutions for the considered (or other) RRAP 
criterion functions?

2. Problem denition
The topic being discussed concerns the optimization of 
a criterion function, represented as:

max (Fc(r, n)),                                      (1)
within constraints:

gy(r, n) ≤ by,                                         (2)

0 ≤ r ≤ 1, n ∊ Z+, y = {1, …, k}, y ∊ Z+, k ∊ Z+,        (3)

where: Fc(r, n) is the system reliability function (Equa-
tion 1) that measures the overall reliability of the sys-
tem based on the reliability vector r and the number of 
elements in the various subsystems n, n is a vector rep-
resenting the number of elements in each subsystem 
of the system being optimized, r is a vector represent-
ing the eliability of each element (Equation 2) in each 
subsystem of the system being optimized, gy is a func-
tion that calculates the physical characteristics of an ele-
ment in a subsystem for a specic constraint number y, by 
is an upper limit for the physical characteristics of an el-
ement in a subsystem for a specic constraint number y, 
and k is the number of constraints that must be satised 
in the optimization problem (Equation 3).

3. Models of the RRAP system
The criterion functions for the scenarios considered 
have been described in detail in the literature [2,5,29]. 
In addition to the cases discussed in the article, other 
test cases include an overspeed system for a gas tur-
bine (Figure 1) and a more complex 15-unit system 
reliability problem with various parameter combina-
tions [29].
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Figure 1. The schematic diagram of an overspeed system 
for a gas turbine [29,30]

3.1.Scenario 1 — bridge system

In the first scenario, the five-element bridge system 
(Figure 2) [2,5,29] was considered.

The criterion function for a bridge system has been 
extensively derived in the literature and can be formu-
lated as follows:

Fc₁(r, n) = R₁ · R₂ + R₃ · R₄ + R₁ · R₄ · R₅ + R₂ · R₃ · R₅ −  
− R₁ · R₂ · R₃ · R₄ − R₁ · R₂ · R₃ · R₅ + R₁ · R₂ · R₄ · R₅ − R₁ ·  
· R₃ · R₄ · R₅ − R₂ · R₃ · R₄ · R₅ + 2 · R₁ · R₂ · R₃ · R₄ · R₅, (4)

where the individual reliability values Ri of each sub-
system are calculated as:

Ri = 1 − (1 − ri)ni, ∀ i ∊ {1, 2, …, m₁}               (5)

where m₁ represents the number of subsystems in the 
whole system in scenario 1 (Figure 2). In this case, m₁ 
is equal to 5.

Figure 2. Diagram of the bridge system analyzed in scenario 1

For the bridge system, the optimization involves 10 de-
cision variables, consisting of five variables ri and five 
variables ni with integer values. In scenario 1 (Figure 2), 
there are five subsystems in the whole system (m₁ = 5), 
and the individual reliability values (Equation 5) Ri of 
each subsystem are calculated using Equation (4).

Three constraints were introduced with k₁ = 3, 
which include total weight and volume (V), cost (C), 
and lifetime (T), as well as a constraint on the system 
weight (W) (Table 1).

(6)

(7)

(8)

i = {1, …, m₁}, 0 ≤ ri ≤ 1, ni ∈ Z+                 (9)

Table 1. Bridge system settings

βi 
i = {1, …, m₁} V C W T [h]

1.5 110 175 200 1000

In Equation (4), ni represents the number of elements 
in the i-th subsystem, ri represents the reliability of each 
element in the i-th subsystem, αi and βi represent the 
physical characteristics of the element in the i-th subsys-
tem, and wi, vi, and ci represent the weight, volume, and 
cost of the element in the i-th subsystem (Equations 6–9).

The parameter settings for the bridge system present-
ed in Table 2 [5] were adopted to ensure the comparability 
of the results with other solutions reported in the litera-
ture. In addition to these parameter settings, other meth-
ods for system reliability analysis are also employed, such 
as path method optimization. The objective function for 
the path method optimization is given by:

Fc₂(r, n) = 1 − (1 − R₁ · R₂) · (1 − R₃ · R₄) ·
· (1 − R₁ · R₄ · R₅) · (1 − R₂ · R₃ · R₅),            (10)

or a cutting plane method, for which the criterion 
function can be expressed as:

Fc₃(r, n) = [1 − (1 − R₁) · (1 − R₃)] · [1 − (1 − R₂) · (1 − R₄)] · 
· [1 − (1 − R₂ · (1 − R₃) · (1 − R₅)] · [1 − (1 − R₁) · (1 − R₄) ·

· (1 − R₅)].                                         (11)

The reliability of the system, calculated using the 
minimum cut method (Equation 11), is always small-
er than the value of reliability computed using the 
minimum path method (Equation 10). This difference 
between the two methods can be utilized for more pre-
cise optimization, is illustrated in Figure 3.
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Table 2. Bridge system settings

Subsystem i 10⁵ · αi wi · vi² wi

1 2.330 1 7

2 1.450 2 8

3 0.541 3 8

4 8.050 4 6

5 1.950 2 9

After analyzing the constraints used in the model, it 
becomes apparent that the second constraint (g₂(r, n)) (7) 
has a significant impact on the permissible range of com-
ponent reliability values, as illustrated in Figure 4.

Figure 3. The system’s reliability was evaluated using 
different analysis methods with a xed number of redundant 

elements (ni = 1 for all i)

Figure 4. Analysis of the second constraint g₂(r, n)

3.2. Scenario 2 — a system 
consisting of 10 elements

The criterion function for the ten-element system (Fig-
ure 5) is more complicated than that for the bridge sys-
tem [21,36]. It can be formulated as follows:

Fc₄(r, n) = R₁ · R₂ · R₃ · R₄ + (R₁ · R₂ · R₆ · R₁₀) · (Q₃ + R₃ · Q₄) + 
+ (R₁ · R₅ · R₉ · R₁₀) · (Q₂ + R₂ · Q₃ · Q6 + R₂ · R₃ · Q₄ · Q₆) + R7 · 
· R₈ · R₉ · R₁₀ · (Q₁ + R₁ · R₂ · Q₃ · Q5 · Q₆ + R₁ · R₃ · Q₄ · Q₅ · Q₆) + 
+ R₂ · R₃ · R₄ · R₅ · R₇ · R₈ · Q₁ · (Q₉ + R₉ · Q₁₀)+ Q1 · R₃ · R₄ · R₆ ·
· R₇ · R8 · Q₁₀ · (Q₂ + R₂ · Q₅)+ Q₁ · Q2 · R₃ · R₄ · R₆ · R₇ · R₈ · R₉ ·
· Q₁₀ + R₁ · Q2 · R₃ · R₄ · R₅ · R₆ · R₉ · Q₁₀ · (Q₇ + R₇ · Q₈) + Q1 · 

· R₂ · R₅ · R₆ · R₇ · R₈ · Q₉ · R₁₀ · (Q₃ + R₃ · Q₄),            (12)

where Ri is defined as in expression (5), and Qi is de-
fined as:

Qi = 1 − Ri , ∀ i ∈ {1, 2, …, m₂}.              (13)

where m₂ is the number of subsystems in the whole 
system (m₂ = 10) for scenario 2 (Figure 5), and the vari-
ables ni, ri have the same meaning as in scenario 1.

Figure 5. Diagram of the system consisting of 10 elements 
analyzed in scenario 2

For scenario 2, the constraints are expressed as:

(14)

y = 1, 2, …, k₂; ni ∈ Z+                         (15)

In scenario 2 (Equation 15) k₂ represents the num-
ber of constraints, which is assumed to be five.

Corrected sentence: The coffecients cyi are randomly 
generated numbers from the interval [0, 100].

The coeffcient r is searched within the range [lb₁, ub₁], 
and the parameter by is calculated as follows:

(16)

where: drand is a randomly generated number with 
a uniform distribution in the range (1.5, 3.5).
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The values of these parameters, as used in the works 
of Yang et al. [6] and Kwiecien et al. [5], are taken from 
Tables 3 and 4 to compare the obtained solutions.

Table 3. Parameters used in scenario 2

i c₁i c₂i c₃i c₄i c₅i

1 33.2468 35.6054 13.7848 44.1345 10.9891

2 27.5668 44.9520 96.7365 25.9855 68.0713

3 13.3800 28.6889 85.8783 19.2621 1.0164

4 0.4710 0.4922 63.0815 12.1687 29.4809

5 51.2555 39.6833 78.5364 23.9668 59.5441

6 82.9415 59.2294 11.8123 28.9889 46.5904

7 51.8804 78.4996 97.1872 47.8387 49.6226

8 77.9446 86.6633 45.0850 25.0545 59.2594

9 26.8835 7.8195 3.6722 76.9923 87.4070

10 85.8722 27.7460 55.3950 53.3007 55.3175

Table 4. Parameters used in scenario 2

Parameters drand

c₁i 3.1250

c₂i 3.4710

c₃i 3.3247

c₄i 2.6236

c₅i 3.4288

4. Selected optimization 
algorithms
Currently, there are over 100 optimization algorithms 
(OPAs) that use different behaviors observed in the 
natural world of plants and animals [31,32]. The devel-
opment of optimization methods is necessary because 
there is a lack of universal and effcient methods for 
searching for the global extrema of analyzed functions. 
Therefore, it is desirable to have familiarity with and 
utilize multiple optimization methods [33].

In this paper, two selected heuristic algorithms [34] 
were utilized to search for the global extrema of the cri-
teria functions Fc₁ (Equality 4) and Fc₄ (Equality 12). It is 
worth noting that the Firefly Algorithm (FA) is known 
for its eciency in optimizing RRAP problems [7].

4.1. Firefly Algorithm FA

The Firefly Algorithm (FA) is an optimization algorithm 
developed by Xin-She Yang at Cambridge University 
in 2007 [2]. The concept of the FA is based on the behav-
ior of fireflies towards the light source and their inter-
action through short, rhythmic bio-luminescence sig-
nals. The algorithm mimics the movement of fireflies 
and uses their natural behavior to nd optimal solutions.

The basic principle of the algorithm is that bright-
er fireflies attract other individuals, leading to a more 
effcient search for space exploration. The algorithm 
utilizes the difference in light intensity, which is pro-
portional to the value of the criterion function Fc₁, to 
find the optimal solution. One of the rules used in the 
Firefly Algorithm is that all fireflies are unisex, and the 
attractiveness (β) between them depends on the dis-
tance and the light absorption coeffcient (γ), which is 
expressed as:

β(d) = β₀e−γd²                                               (17)

where: β₀ denotes the attractiveness at distance d = 0.
In the solution space examined in this paper, the 

k-th step during which a rey with index i, located at 
position xi, attempts to approach a ‘more attractive’ 
individual with index j, located at position xj, can be 
expressed by the equation [6]:

 (18)

where: xrand is a random number with a uniform distri-
bution in the range [0,1], dij   represents the distance 
between fireflies with index i and j in the previous 
(k − 1) step, β₀ denotes the attractiveness at distance 
d = 0, γ denotes the light absorption coeffcient, and αf f 
is a randomization parameter.

The general structure of the Firefly Algorithm is as 
follows:

1. Initialize parameters: β₀, αf f, stopping criteria – 
maximum number of iterations N max

iter with repeat 
ing the calculations for each case Nrepcalc times, 
randomly generate an initial population of Nf f 

fireflies, dene objective functions Fc(r, n) with 
constraints g(r, n).

2. Compute the light intensity of each individual, 
value of the objective function Fc(r, n) express-
es the light intensity of i−th firefly Ii – when the 
constraints are met, checked at the time of each 
position calculation xi

k.
3. While the stopping criteria have not been met, is 

executed:

k−1

www.stijournal.pl
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• compare all pairs of fireflies in terms of light 
intensity – if Ij > Ii the firefly i moves in the di-
rection of the firefly j;

• evaluate new solution r, n, determine the new 
value of the objective function Fc(r, n) with the 
constraints, update the light intensity.

4. If the stopping criterion (maximum number of 
iterations N max

iter )has been met, determine the best 
solution.

4.2 Cuckoo Search CS

The second algorithm used to search for solutions to 
the two RRAP problems is the Cuckoo Search (CS) algo-
rithm [6]. This algorithm, proposed in 2009 by Xin-She 
Yang and Suash Deb [35], mimics the behavior of cuck-
oo birds at effcient search space exploration of their 
nests. The process of generating a new solution xi

k  for 
the i-th cuckoo/ nest by randomly selecting it and using 
Lévy flight can be expressed as follows:

xi
k  = xi

k−1 + αCS ⊕ s,                       (19)

where: ⊕ is point-to-point multiplication (entry-wise 
product of two vectors), k is the step number (i.e., the 
next iteration), xi

k  is the solution obtained in the k-th 
step for the i-th cuckoo, αCS  is a scale factor whose 
value depends on the size of the problem; s is the step 
length determined by a Lévy probability distribution, 
and L(λ) denotes a Lévy flight step.

Here, αCS > 0 is the step size scaling factor, which 
should be related to the scales of the problem of in-
terest. In most cases, we can use αCS = O(L/10) or 
αCS = O(L/100), where L is a characteristic scale of the 
problem of interest [36]. The exploitation mechanism 
of the CS algorithm is based on local search, and the 
exploration mechanism is based on Lévy flights, which 
are drawn from the Lévy probability distribution [6] 
and can be expressed by the formula:

(20)

For the stable Lévy distribution with α = 0.5, the 
probability density function is given by:

(21)

where: α – first shape parameter 0 < α ≤ 2, δ – location 
parameter −∞ < δ < ∞, γl-scale parameter 0 < γl < ∞, 
Γ(·) – the gamma function:

(22)

The step length (or size) can be calculated using 
Mantegna and Stanley’s algorithm [37] as:

(23)

where:
U = N(0, σv²) ∙ σu, V ~ N N(0, σv²),               (24)

and:

(25)

where: α – first shape parameter distribution.

Figure 6 shows an example implementation of 
a Lévy flight (visualization restricted to 3D space), with 
the parameters listed in Table 5. Upon analyzing the 
steps generated by the CS algorithm, it can be observed 
that among a large number of small steps, the algo-
rithm occasionally performs large jumps known as 
Lévy flights. These jumps are named after the French 
mathematician Paul Pierre Lévy. A characteristic fea-
ture of the Lévy distribution [38] is the long 'tails' that 
occur for large values, unlike the Gaussian (Normal) 
distribution (Figure 7) [39]. The trajectory of a Lévy 
flight has a fractal dimension df  = λ [40–42]. 

Figure 6. Visualization of an example Lévy flight (λ = 1.5) 
in Euclidean space R3

A search for the maximum of the criterion functions 
Fc1 (4) and Fc4 (12) was performed using the two selected 
algorithms. For each combination of the selected con-
trol parameters of the algorithm, Nrepcalc (the number 
of repetitions), calculations were performed (Table 5). 
The range of control parameters of the algorithms was 
chosen arbitrarily, limiting them to the most charac-
teristic cases for the considered algorithm. In addition, 
the calculation parameters for the CS algorithm (the 
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number of iterations N max
iter  and the number of repeti-

tions Nrepcalc) were chosen so that the calculation times 
were comparable.

Figure 7. Compare Stable Distributions pdf

5. Calculation results

In Table 5, the control variables of the selected al-
gorithms are presented, and results of calculations 
and solutions for scenario 1 and scenario 2 obtained 
with the two analyzed algorithms were obtained. The 

calculations for the CS algorithm [43] concerned chang-
es in the probability of detecting an egg tossed by the 
cuckoo, pa, and Lévy distribution parameter, λ.

For the FA algorithm [44], all combinations of the 
four parameters listed in Table 5 were considered: ran-
domness, αf f , reference ‘attractiveness’ factor, β₀, ab-
sorption coeffcient,γ, and population size, N.

To measure the improvement of the best solutions 
found by the FA algorithm in comparison with those 
given by CS, an improvement index is required. This 
index [29], which has been called Maximum Possible 
Improvement (MPI), is defined as follows:

(26)

where: Fc
bestalg – the best algorithm, in this case Fc

bestalg = Fc
FA; 

Fc
alg – the best system reliability for the objective func-

tion Fc1 (Equation 4) and Fc4 (Equation 12) obtained by 
the algorithm alg ∉ FA, e.g., CS algorithm.

Let F alg
c1  and F alg

c4  be the best system reliability val-
ues obtained by an algorithm (alg) for criteria Fc1 and 
Fc4, respectively. Let F alg

c1  and F alg
c4  be their respective 

means. Then, the correlation coefficient between the 
results (criterion function values) of the two scenarios 
obtained using the FA and CS algorithms can be calcu-
lated using the formula:

(27)

Table 5. Parameters of both scenarios

Parameters Values

Problem dimension ND = msc · 2; sc ∈ {1, 2}; m₁ = 5, m₂ = 10

Maximum number of iterations  N max
iter  = 100 and 1,000 (CS)

Number of repetitions (each case) Nrepcalc = 10 and 10,000 (CS)

Constraints values (lower bound, upper bound) lb₁ = 0.65; ub₁ = 0.85; lb₂ = 1; ub₂ = 4

FA  Firefly Algorithm

Number of fireflies Nf f = 50

Randomization parameter αf f = {0.1, 0.2, …, 1.0}

Reference factor of 'attractiveness' β₀ = {0.1, 0.2, …, 1.0}

Absorption coecient γ = {0.01, 0.10, 1.00}

CS  Cuckoo Search Algorithm

Number of nests Nnests = 50

Probability of detecting a cuckoo's egg pa = {0.25, 0.26, …, 0.50}

Lévy distribution parameter λ = {1.1, 1.2, …, 1.9}

Positive step size scaling factor αCS = 1/100 ∙ N(0, 1) ∙(xi
k−1 − xi

best), where xi
best – the best solution 
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where Nrep is the number of repetitions, par1, par2, ... 
are the selected control parameters of the algorithms, 
ralg is the resulting correlation coeffcient between the 
two criteria functions Fc1 and Fc4 obtained by the algo-
rithm alg, F alg

c1  and F alg
c4  are the mean values of the 

criteria functions Fc1 (Equation 4) and Fc4 (Equation 12) 
obtained by the algorithm (alg), and par1, par2, ... are 
the parameters of the algorithms. For example, for the 
FA algorithm, these parameters could be αf f , β₀, and γ, 
while for the CS algorithm, they could be pa and λ.

We used the analysis of variance (ANOVA) test statis-
tics to determine the statistically significant differences 
in average performance. Post hoc analysis using Tukey’s 
honestly significant difference (HSD) test was conduct-
ed to investigate which of the parameters were signi-
cantly different from each other for the tested algorithm.

The criterion and constraint values presented in the 
tables and gures are unitless.

5.1. Results for FA

For both scenarios, the best results were obtained 
using the parameter set of the FA algorithm: αf f = 0.5, 
β₀ = 1.0, γ = 0.01 (Tables 6–9). For the criterion function 
Fc1, the maximum value obtained was 0.99995661 (Ta-
ble 6). In scenario 2, the best solutions were obtained 
with Fc4 = 0.99992902 (Table 8) using the FA algorithm.

Table 6. The best solution for scenario 1 u the FA

Parameters αf f = 0.5, β₀ = 1.0, γ = 0.01

Solutions Fc
min 0.99995653

Solutions Fc
max 0.99995661

Solutions Fc
mean 0.99995657

Solutions σ 2.27604463e–08

Calc. time [s] 
hline 216.0in

Table 7. The best solution for scenario 1 using the FA 
αf f = 0.5, β₀ = 1.0, γ = 0.01

Parameters Values

r₁ 0.78571

r₂ 0.8500

r₃ 0.8500

r₄ 0.7520

r₅ 0.6601

n₁ 4

Parameters Values

n₂ 4

n₃ 3

n₄ 2

n₅ 3

Table 8. The best solution for scenario 2 was achieved  
using the FA algorithm

Parameters αf f = 0.5, β₀ = 1.0, γ = 0.01

Solutions Fc
min 0.99992644

Solutions Fc
max 0.99992902

Solutions Fc
mean 0.99992773

Solutions σ 9.85429365e–07

Calc. time [s] 189.3

Table 9. The best solution for scenario 2 was achieved using 
the FA algorithm with the parameter values  

αf f = 0.5, β₀ = 1.0, γ = 0.01

Parameters Values Parameters Values

r₁ 0.8500 n₁ 4

r₂ 0.8500 n₂ 4

r₃ 0.8500 n₃ 4

r₄ 0.8500 n₄ 4

r₅ 0.8500 n₅ 4

r₆ 0.7429 n₆ 1

r₇ 0.7989 n₇ 2

r₈ 0.6626 n₈ 2

r₉ 0.6902 n₉ 2

r₁₀ 0.8295 n₁₀ 2

By analyzing the parameter space using the post-
hoc Tukey’s honestly significant difference (HSD) 
test for ANOVA, we observed that the null hypothesis 
of no significant difference should be rejected for 
three cases when using the parameter set of αf f = 0.4, 
β₀ = 0.8, and γ = 0.01 (Table 11).

We conducted a more detailed analysis of the pa-
rameter space and found that the most significant val-
ues of the criterion function in both scenarios were 
obtained with αf f = 0.4, β₀ = 0.8, and γ = 0.01, with the 
exact maximum value of Fc1 = 0.999956606987731. For 
the second scenario, the exact maximum value of the 
criterion function Fc4 = 0.999929024736168 was reached 
in 28 cases (white boxes in Figure 9).
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By reviewing the control parameter space of the 
FA algorithm (Figure 8), it is possible to observe 
a high compliance of the range of algorithm param-
eters leading to worse solutions. The highest values 
of correlation coeffcient r (27) were achieved for 
αf f = 0.5, rFA = 0.9912, αf f = 0.7, rFA = 0.9881, and αf f = 0.9, 
rFA = 0.9858 (Figure 8).

5.2. Results for CS

Due to the variability of solutions obtained using the 
CS algorithm (as shown in Tables 7 and 13), we exper-
imented with different stopping criteria and numbers 
of iterations. The values of pa, λ, N max

iter , and Nrepcalc were 
adjusted accordingly (see Table 5). In addition, we also 
tested the performance of the algorithm with larger 
values of N max

iter  and Nrepcal, specically N max
iter  = 1,000 and 

Nrepcalc = 10,000 (Table 14).

Due to the variability of solutions obtained using the 
CS algorithm (as shown in Tables 7 and 13), we exper-
imented with different stopping criteria and numbers 
of iterations. The values of pa, λ, N max

iter , and Nrepcalc were 
adjusted accordingly (see Table 5). In addition, we also 
tested the performance of the algorithm with larger 
values of N max

iter , and Nrepcalc, specically N max
iter  = 1,000 and 

Nrepcalc = 10,000 (Table 14).
Similarly, by analyzing the control parameter space 

of the CS algorithm (Figure 9), it is possible to obtain 
similar but lower-quality solutions (Table 14, Table 16). 
The highest values of correlation coeffcient rCS  (27) were 
achieved for pa = 0.39, rCS = 0.7855, pa = 0.25, rCS = 0.7105, 
and pa = 0.30, rCS = 0.6264.

For the rst scenario, the FA algorithm resulted in 
better solutions (Table 6) compared to the CS algo-
rithm. However, the CS cuckoo algorithm was able to 
find a solution much faster (Table 12). All calculations 
were performed using the Matlab package R2020b 

Figure 8. The solutions for both scenarios were obtained using the FA algorithm with the parameter γ set to 0.01

Figure 9. Solutions for scenario 1 and 2 has been achieved using CS algorithm
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with the Statistics and Machine Learning Toolbox on 
the Windows 10 Pro operating system and Intel® Core™ 
i5–7200U CPU 2.50GHz.

The solutions obtained using the CS algorithm dier-
ed from those obtained using the FA algorithm.

For instance, the number of elements (n₃ ÷ n₅) (Ta-
ble 7 vs. Table 13) for scenario 1, the number of ele-
ments n₅ (Table 11 vs. Table 17) for scenario 2, and of 
course, the values of reliability. 

In the investigated space of FA control parameters, 
difficulties were encountered in obtaining a solution 
that satisfies the assumed constraints in both scenarios 
for the set of αf f = 0.1, β₀ = 1.0, and γ = 0.1.

Additionally, for the second scenario, the set of 
αf f = 0.1, β₀ = 0.5, and γ = 0.1 was found to be problematic.

Table 10. Post-hoc Tuckey RIR tests for FA scenario 1 and 
αf f = 0.4, β₀ = 0.8, and γ = 0.01

Parameters p-values

αf f = 0.1, β₀ = 0.1, γ = 0.01 0.000116

αf f = 0.1, β₀ = 0.2, γ = 0.01 0.000116

αf f = 0.2, β₀ = 0.1, γ = 0.01 0.000116

αf f = 0.1, β₀ = 0.1, γ = 0.1 0.000116

αf f = 0.1, β₀ = 0.2, γ = 0.1 0.000116

αf f = 0.1, β₀ = 0.3, γ = 0.1 0.000116

αf f = 0.2, β₀ = 0.1, γ = 0.1 0.000116

αf f = 0.2, β₀ = 0.2, γ = 0.1 0.000116

αf f = 0.1, β₀ = 0.1, γ = 1.0 0.000116

αf f = 0.1, β₀ = 0.2, γ = 1.0 0.000116

αf f = 0.1, β₀ = 0.3, γ = 1.0 0.000116

αf f = 0.1, β₀ = 0.4, γ = 1.0 0.000116

αf f = 0.1, β₀ = 0.5, γ = 1.0 0.000116

αf f = 0.1, β₀ = 0.6, γ = 1.0 0.000116

αf f = 0.1, β₀ = 0.7, γ = 1.0 0.000116

αf f = 0.1, β₀ = 0.8, γ = 1.0 0.000116

αf f = 0.1, β₀ = 0.9, γ = 1.0 0.000116

αf f = 0.1, β₀ = 1.0, γ = 1.0 0.000117

αf f = 0.2, β₀ = 0.1, γ = 1.0 0.000116

αf f = 0.2, β₀ = 0.2, γ = 1.0 0.000116

αf f = 0.2, β₀ = 0.3, γ = 1.0 0.000116

αf f = 0.2, β₀ = 0.4, γ = 1.0 0.000116

αf f = 0.2, β₀ = 0.5, γ = 1.0 0.000116

αf f = 0.2, β₀ = 0.6, γ = 1.0 0.000116

Parameters p-values

αf f = 0.3, β₀ = 0.1, γ = 1.0 0.000116

αf f = 0.3, β₀ = 0.2, γ = 1.0 0.000116

αf f = 0.3, β₀ = 0.3, γ = 1.0 0.000116

αf f = 0.3, β₀ = 0.4, γ = 1.0 0.014025

αf f = 0.3, β₀ = 0.5, γ = 1.0 0.000116

αf f = 0.3, β₀ = 0.6, γ = 1.0 0.000144

αf f = 0.3, β₀ = 0.7, γ = 1.0 0.000116

Table 11. Post-hoc Tukey RIR tests were performed for the 
FA algorithm in scenario 1 using the parameter set  

αf f = 0.4, β₀ = 0.8, and γ = 0.01

Parameters p-values

αf f = 0.1, β₀ = 0.1 0.000047

αf f = 0.2, β₀ = 0.1 0.000047

αf f = 0.1, β₀ = 0.2 0.000047

αf f = 0.1, β₀ = 0.3 0.483894

αf f = 0.3, β₀ = 0.7 0.997808

αf f = 0.1, β₀ = 0.8 0.857372

αf f = 0.2, β₀ = 0.1 0.987661

αf f = 0.3, β₀ = 0.1 0.999464

αf f = 0.1, β₀ = 0.9 0.991139

αf f = 0.2, β₀ = 0.9 0.999796

αf f = 0.3, β₀ = 0.9 0.952106

αf f = 0.1, β₀ = 1.0 0.278482

αf f = 0.2, β₀ = 1.0 0.832396

αf f = 0.3, β₀ = 1.0 0.999918

Other cases 1.000000

Table 12. The best solution for scenario 1 by CS

Parameters pa = 0.27, γ = 1.5, 
 N max

iter  = 100, Nrepcalc = 10 

Solutions Fc
min 0.99972966

Solutions Fc
max 0.99994780

Solutions Fc
mean 0.99984451

Solutions σ 7.40185829e–05

Calc. time [s] 1.7

MPI (%) 0.1688

||rFA − rCS||₂ 0.1300

||nFA − nCS||₂ 1.7321
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Table 13. The best solution for scenario 1 using CS is 
pa = 0.27, λ = 1.5, N max

iter  = 100, and Nrepcalc = 10

Parameters Values

r₁ 0.8298

r₂ 0.8380

r₃ 0.8500

r₄ 0.6500

r₅ 0.7265

n₁ 4

n₂ 4

n₃ 2

n₄ 3

n₅ 2

The study aimed to investigate the effect of chang-
ing the lambda parameter (λ) of the Lévy distribution 
on the obtained solutions with an increased number of 
iterations. For this purpose, Table 5 was utilized.

In scenario 1, increasing the lambda parameter 
and the number of iterations (i.e., N max

iter  and Nrepcalc) 
resulted in the highest value of the criterion function 
for the CS algorithm. The optimal parameters were 
pa = 0.27, λ = 1.5, N max

iter  = 100, and Nrepcalc = 10 (Table 12), 
and pa = 0.30, λ = 1.1 for N max

iter  = 1,000 and Nrepcalc = 10,000 
(Table 15). The increase in the number of iterations 
not only improved the value of the criterion function 
but also reduced the Euclidean difference between the 
obtained solutions of the FA and CS algorithms. In sce-
nario 2, the highest value of the criterion function was 
obtained for the CS algorithm with pa = 0.33 and λ = 1.1 
(Table 17). Although the difference in MPI was small, 
the solutions obtained for the sought variables diered 
(Table 11, Table 17). 

Table 14. The best solution for scenario 1 using CS algorithm

Parameters
pa = 0.30, γ = 1.1, 

N max
iter  = 1,000, Nrepcalc = 10,000 

Solutions Fc
min 0.99921071

Solutions Fc
max 0.99995645

Solutions Fc
mean 0.99984281

Solutions σ 6.41364325e–05

Calc. time [s] 346.4

MPI (%) 0.0037

||rFA − rCS||₂ 0.0124

||nFA − nCS||₂ 0

Table 15. The best solution for scenario 1 using CS algorithm 
was achieved with the parameter settings of  

pa = 0.30, λ = 1.1, N max
iter  = 1,000, and Nrepcalc = 10,000

Parameters Values

r₁ 0.7919

r₂ 0.8500

r₃ 0.8499

r₄ 0.7483

r₅ 0.6500

n₁ 4

n₂ 4

n₃ 3

n₄ 2

n₅ 3

Table 16. The best solution for scenario 2 using CS algorithm

Parameters
pa = 0.33, γ = 1.1, 

N max
iter  = 1,000, Nrepcalc = 10,000 

Solutions Fc
min 0.99550799

Solutions Fc
max 0.99992758

Solutions Fc
mean 0.99892402

Solutions σ 5.51629947e–04

Calc. time [s] 387.5

MPI (%) 0.0198

||rFA − rCS||₂ 0.1893

||nFA − nCS||₂ 1

Table 17. The best solution for scenario 2 using CS algorithm 
was achieved with the parameter settings of  

pa = 0.33, λ = 1.1, N max
iter  = 1,000, and Nrepcalc = 10,000

Parameters Values Parameters Values

r₁ 0.8500 n₁ 4

r₂ 0.8500 n₂ 4

r₃ 0.8500 n₃ 4

r₄ 0.8500 n₄ 4

r₅ 0.8500 n₅ 3

r₆ 0.7671 n₆ 1

r₇ 0.8453 n₇ 2

r₈ 0.8432 n₈ 2

r₉ 0.6973 n₉ 2

r₁₀ 0.8500 n₁₀ 2
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6. Conclusions
The presented results contribute to the ongoing dis-

cussion on using nature-inspired algorithms for solv-
ing RRAP problems. Based on the two test scenarios 
described, including the Firefly Algorithm (FA), these 
algorithms can be considered appropriate tools for vali-
dating other optimization algorithms in RRAP problems.

Although the CS algorithm is known for its eective-
ness due to its use of Lévy flight (Figure 6), the FA algo-
rithm was found to be more effective in the considered 
parameter range. The use of the FA algorithm led to 
solutions with a higher value of the criterion function 
(Table 6, Table 8).

It is worth noting that the best solutions using CS were 
achieved for λ values different from the default value of 
1.5 (with α = 0.5) for the Lévy stable distribution used.

In addition to comparing the values of the criteri-
on function, the MPI (Eqation 26), and the Euclidean 
distance dierences of both the reliability (|rFA − rCS|₂) 
and the number of redundant elements (|nFA − nCS|₂) 
obtained by carefully selecting the parameters of the 
CS algorithm can also be compared.

The comparison of the criterion function values, 
the linear r-Pearson correlation coeffcient,and the data 
from the post-hoc RIR Tukey test led to the selection 
of the same (or similar) control parameters for the an-
alyzed algorithms. Therefore, the presented analysis 
methods can also be used to compare other optimiza-
tion algorithms.

Such an approach can extend the application of well-
known test function benchmarks for global RRAP optimi-
zation. For example, test functions such as Michalewicz’s, 
Rosenbrock’s, De Jong’s, Schwefel’s, Ackley’s, Rastring’s, 
Easom’s, Griewank’s, Shubert’s [35,45], Bohachevsky’s, 
Matyas’s, Zakharov’s, and Goldstein-Price’s [46], as well 
as other functions [6,47] or Tallard’s test functions [48], 
can benefit from the proposed analysis methods.
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