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Abstract

The paper deals with the development of a new method for the generation of binary 
fingerprints based on the Savitzky-Golay (SG) algorithm and first-order derivatives of 
FTIR spectra, which are then used to create prediction models for selected the physico-
chemical properties of chemical compounds. Models based on the FEDS (Functionally-
Enhanced Derivative Spectroscopy) transformation and raw spectra were used as 
a reference to determine whether the use of the SG filter and first-order derivatives 
was worth to further develop. The FTIR spectra of 103 compounds with theoretically 
determined values of logP, logD and logS were studied. The Tanimoto coefficient 
and correlation coefficient were used to compare the fingerprints obtained, while 
the root mean square error (RMSE) was used to assess the quality of the prediction 
models. Based on the results, it was found that the use of the SG filter and derivatives 
had a positive effect on the quality of the prediction models for logP and logS, and 
a negative effect on the quality of the models for logD, compared to the models based 
on original spectra and FEDS transformation.
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Introduction 

In recent years chemistry has evolved from a field 
based solely on direct work with chemical substances 
and the use of instrumental methods to science that 
makes use of the latest advances in mathematics, com-
puter science, and many other branches of science. By 
using appropriate mathematical calculations and the 
computational power of modern computers, the pro-
cess of making new substances in the pharmaceutical, 
food or chemical industries can be simplified. The 
combination of well-known instrumental methods 
with suitable (in silico) mathematical methods offers 
almost unlimited possibilities [1].

A fingerprint is one of many methods of represent-
ing chemical compounds, in this case in the form of 
a sequence of bits [2,3], where zeros indicate the ab-
sence of a given property (i.e. substructure) and ones 
indicate the presence of a given property. Molecular 
fingerprints are generally not a unified way of rep-
resenting a chemical compound (unlike SMILES or 
SMARTS codes), and up to date many different ways of 
generating fingerprints have been reported [4,5]. One 
of the most important application of molecular finger-
prints is to use them to create mathematical models 
to predict physicochemical or biological properties. 
The development of a relatively reliable model has the 
potential to simplify the process of developing new 
therapeutic agents, for example, by predicting some 
of the properties of a compound without the need for 
long-lasting, and expensive experimental studies. 

One of the biggest obstacles in analyzing a digital 
signal (e.g. a spectroscopic spectrum or an electrocar-
diogram) is noise. Noise not only makes analysis diffi-
cult, but it also affects the visual aspects of presenting 
the results. In the case of spectroscopic spectra, they 
can appear as fluctuations in absorbance (or transmit-
tance). Noise is a type of signal distortion caused by, 
among other things, errors in the detector itself [6]. For 
these reasons, it is not possible to eliminate noise from 
a digital signal by, for example, calibrating the instru-
ment or taking many measurements. One method of 
eliminating noise is to filter the received signal using 
an appropriate numerical algorithm. One of the most 
popular digital filters is the Savitzky-Golay (SG) filter 
[7]. Due to its simplicity and efficiency, it has found 
enormous applications in analytical chemistry or che-
mometrics. It was popularized by Abraham Savitzky 
and Marcel J.E. Golay in 1964, when they published ta-
bles of convolution coefficients for various polynomi-
als and subset sizes [8]. Thanks to the popularity of the 
Savitzky-Golay filter, the original paper was recognized 

by the journal Analytical Chemistry as the fifth-best pa-
per published in the journal [9].

The basis of the Savitzky-Golay filter is convolution, 
which fits a low-degree polynomial to a given point 
and a predetermined number of neighboring points 
(window width) using a least-squares method [10]. In 
practice, this means that the SG filter extracts from 
a given data set a small subset, centered on the point 
under study and a predetermined number of neighbor-
ing points on either side of said point. A polynomial 
with a pre-selected degree is then fitted to such a sub-
set (therefore, the width of the window determines the 
power with which the signal will be smoothed). The SG 
filter iterates the above steps for each point in the set.

The use of derivatives as a tool for the analysis of 
spectroscopic spectra dates back to the 1950s. However, 
it was not until the 1970s that their development and 
popularity increased [11]. They offer a great deal of 
convenience in the analysis of spectra, including the 
ability to easily locate significant parts of the absorp-
tion bands. These can include the locations of peaks, 
inflection points and absorption band edges.

One of the major obstacles in the analysis of infra-
red spectroscopic spectra is the spectral band overlap 
(SBO) phenomenon [12,13]. The reason for this phe-
nomenon is the occurrence of absorption bands of 
different chemical bonds in the same or similar wav-
enumber intervals. It is particularly noticeable among 
bonds between the same atoms at different groups of 
compounds (for example, the N-H bond in amides and 
amines). There are methods to minimize the effect of 
SBO, including:

• increasing resolution and minimizing noise;
• modifications to the test sample (e.g. change of 

solvent);
• mathematical transformations, i.e.: derivatives 

(the most commonly used are second-order deriv-
atives) [14] and deconvolution [15].

One method of FTIR spectra transformation is Func-
tionally-Enhanced Derivative Spectroscopy (FEDS). 
The main objective of FEDS is to separate the bands 
and simplify the spectrum by narrowing the individu-
al bands without significantly changing their position. 
This is achieved by creating a P-function from a series 
of simple functions [16].

(1)

where: 
Pi – the P-function for the i-th point,
A

i
 – the absorbance for the i-th point.

www.stijournal.pl

www.stijournal.pl


11

Science, Technology and Innovation, 2022, 17 (1–2), 9–29

FTIR fingerprint — testing a new representation of the binary fingerprint…

Materials and methods 

Data set

The FTIR spectra of 103 compounds (the full list is in 
Appendix 1) were obtained in our previous work [17,18] 
and were used in this research. Also, the results for the 
methods examined in that work were used for compar-
ative purposes.

A Nicolet™ iS™ 5 FTIR spectrophotometer was used 
to measure the spectra. Each spectrum was obtained 
by averaging 16 scans taken at a resolution of 2 cm−1 
over the range of 4000–650 cm−1. The measurements 
were recorded using OMNIC software, while further 
processing (smoothing and derivation of the spectrum) 
was performed using RStudio. Smoothing and deriva-
tion were performed with custom scripts using R li-
braries, i.e. prospectr and rootSolve. Predictive models 
were developed using the KNIME (KNstanz Informa-
tion MinEr) environment (Appendix 3). Theoretical 
and experimental physicochemical properties used for 
the research were fetched from the chemspider.com 
website (accessed April 7, 2022).

FTIR fingerprint algorithm 

The algorithm of FTIR-based molecular fingerprint 
generation was proposed in our previous work [17,18]. 
Herein, we tested the performance of this algorithm by 
adding a preprocessing step for the original FTIR spec-
tra. Thus, the generation of the binary fingerprints in 
the present work was performed according to the fol-
lowing protocol: 

1. Preprocessing of the FTIR spectra (smoothing 
and differentiation).

2. Locating the roots of the derivative spectrum 
(roots refer to the location of the peak in the spec-
trum).

3. Matching of localized root positions to pre-select-
ed wavenumber intervals corresponding to peak 
locations for individual absorption bands.

4. Generation of spectral fingerprint (fs). If the loca-
tion (i.e. wavenumber) of the root matches any of 
the wavenumber intervals, the bit corresponding 
to that wavenumber interval has the value of ‘1’.

5. Comparison of the spectral fingerprint with 
a molecular fingerprint (fm), which is based on 
the molecular structure of the compound. For 
example, if the compound is an alcohol, the 
C–O bond will result in the presence of a bit at 
positions 80 and 83 in the molecular fingerprint. 

A table listing our definition of the substructures 
for each position in the fm is in Appendix 2. 

6. The agreement of a given bit in both fingerprints 
results in the presence of a bit (‘1’) in the final fin-
gerprint, while the absence of a bit in one or both 
fingerprints in a given position results in the ab-
sence of a bit (‘0’) in the final fingerprint.

Based on the obtained fingerprints and the known 
values of logP, logS, and logD, the predictive models 
were built using linear regression and regression tree 
algorithm. A genetic feature (variable) preselection 
strategy with iterations of 1000 and a population size of 
50 was used for the calculations for both the regression 
tree and the linear regression algorithm. In addition, 
the data for linear regression was pre-processed using 
PCA (Principal Component Analysis) with a target di-
mension of 50. The quality of a given prediction model 
was assessed by comparing the true value of a given 
physicochemical parameter with its predicted value. 
This was obtained by the use of the root mean square 
error (RMSE) parameter.

Results and discussion

Basic methods of FTIR spectra 
preprocessing

Firstly, the FTIR fingerprints were investigated based on 
pure experimental spectra modified by a first-order de-
rivative without any pre-processing. However, this type 
of approach renders the use of spectroscopic spectra 
completely meaningless, as all the noise and interfer-
ence present in the spectrum are interpreted as absorp-
tion bands. The spectral fingerprint obtained in this way 
was characterized by a high and unjustified number of 
bits on (‘1’), since the number of roots in the derivative 
spectrum is also high (as shown in Figure 2, the differen-
tiation of the pure spectrum resulted in 293 roots).

Based on these results, it can be concluded that the 
use of a suitable filter is necessary to eliminate as much 
noise as possible. In the present study, it was decided 
to use an SG filter because of the nature of the noise 
present in the experimental spectra. If the spectrum 
is measured correctly, the noises that can be observed 
are local fluctuations in absorbance that tend to accu-
mulate at the end of the spectrum and in areas where 
there are no absorption bands. During the research, it 
was concluded that direct application of the SG filter 
across the spectrum is a significant complication due 
to the different densities of absorption bands in differ-
ent areas of the spectrum.
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Figure 1. FTIR fingerprint generation scheme

Figure 2. FTIR spectrum and its 1st derivative of bromobenzene. Red dots indicate roots
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In general, FTIR spectra can be divided into two 
regions: the fingerprint region, which has no specif-
ic conventional limit but is considered in this article 
to be between 650 and 1500 cm−1, and the functional 
group region, which is between 1500 and 4000 cm−1 [19]. 
The fingerprint region is characterized by a dense 
packing of absorption bands [20], so the application of 
a high-power filter can cause the merging of the sep-
arate absorption bands. However, for the functional 
group region, which is characterized by a lower pack-
ing of absorption bands and a higher presence of noise, 

a relatively higher power filter would be preferable. To 
avoid this phenomenon when processing the spectra, 
the two areas were processed separately with different 
window width. 

After a thorough visual analysis of the spectra, as 
well as an examination of the influence of the window 
width on the number of detected roots in the finger-
print and the function group area, it was concluded that 
the best smoothing effect with the SG filter is achieved 
for the window width of 200 assigned to the fingerprint 
area, and 400 to the function group area.

Figure 3. Comparison of the influence of the window width used in the SG filter on the shape of the 
FTIR fingerprint region. Black indicates a slice of the original spectrum, blue with a window width 

of 100, red with a window width of 200, and green with a window width of 400

Advanced methods of FTIR spectra 
preprocessing

Secondly, four methods of processing the FTIR spec-
tra were developed and for each method, two cut-off 
levels were used to generate spectral fingerprints. The 
selection criterion was to make the cut-offs as repre-
sentative as possible, e.g. if both the higher and lower 
cut-offs did not significantly affect the number of bits 
in the final fingerprint or were similar in terms of the 
Tanimoto coefficient, both were omitted:

a) Baseline (BS) – all absorbance values below a giv-
en cut-off are removed (Figure 4). Used cut-offs 
are 0.15 and 0.10;

b) Pre-Smoothing Fragmentation (PrSF) – the spec-
trum is split into fragments which are either 
smoothed using the regular SG filter (window 
width = 400) or with a far stronger SG filter (win-
dow width = 1500), if the amplitude of the values in 
a given fragment is less than the cut-off (Figure 5). 
Used cut-offs are 0.15 and 0.25; 

c) Post-Smoothing Fragmentation (PoSF) – the 
smoothed spectrum is split into fragments and 
the given fragment is either left unchanged or all 
absorbance values in the fragment are set to 0 if 
the amplitude of the values in a given fragment is 
less than the cut-off (Figure 6). Used cut-offs are 
0.15 and 0.25;
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Figure 4. Comparison of cut-offs in the baseline (BS) method (colors of line marks the cut-off applied: 
black – original spectrum; red – 0.05; blue – 0.10; green – 0.15; yellow – 0.20).

Figure 5. The effect of window widths of 500 and 1500 on the smoothing power of selected parts of the 
trimesic acid spectrum
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Figure 6. Effect of cut-offs on the spectrum of trimesic acid derivatives in the PoSF method with plots 
of the original spectra as reference. Cut-offs: 0.15 – yellow; 0.25 – blue; 0.35 – black

Figure 7. Effect of cut-offs on the spectrum of trimesic acid derivatives in the DF method with graphs 
of the original spectra as reference. Cut-offs: 0.005 – black; 0.002 – blue; 0.001 – yellow; 0.0005 – green

d) Derivative Fragmentation (DF) – the derived 
spectrum is fragmented and the fragment is ei-
ther left unchanged or all absorbance values in 

the fragment are set to 0, if the amplitude of the 
values in a given fragment is less than the cut-off 
(Figure 7). Used cut-offs are 0.0050 and 0.0005.
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Prediction models evaluation

Based on the above-described methods, final finger-
prints were generated according to the algorithm pre-
sented in the previous section and then used to create 
models to predict physicochemical properties. Predic-
tive models were based on linear regression and a re-
gression tree algorithm.

During the study, it was observed that in almost 
all cases the models based on the regression tree 
were more accurate in predicting physicochemical 

properties. As can be seen in Figure 8, the prediction 
models for logP and logS obtained by the regression 
tree method show better quality than those obtained 
by linear regression (except for PoSF with a cut-off 0.15, 
which showed a 2.45% worse result). The prediction 
models for logD showed a significantly higher degree 
of similarity between the results of the two methods, 
but the regression tree still proved to be the better 
method (by 6.11% on average). Therefore, the results 
obtained using the regression tree method will be used 
to compare the methods themselves.

As can be seen in Table 1, it is not possible to de-
termine the best method for processing spectroscopic 
spectra to generate fingerprints in the context of cre-
ating predictive models. To compare the methods, the 
deviation from the lowest error in the group was deter-
mined for each RMSE value obtained. The mean of the 
results for each method and the cut-off was then calcu-
lated. It can be seen that fingerprints obtained by the 
baseline (BS) and derivative fragmentation (DF) meth-
ods showed relatively the highest performance. In the 

case of fingerprints obtained using the baseline meth-
od (BS), the RMSE values showed an average deviation 
from the best result of 23.53% (with a deviation for 
a cut-off of 0.15 of only 14.41%). For the derived frag-
mentation method, the same parameter was 29.69%. In 
contrast, the PrSF method consistently showed some 
of the worst results among all the physicochemical 
properties tested, with an average deviation of 54.90%. 
The results for the PoSF method proved highly variable.

Figure 8. The percentage deviation between the RMSE values for the models obtained using a regres-
sion tree and linear regression

Table 1. Summary of minimum RMSE error values for regression tree models predicting logP, logD and logS values. The lowest 
RMSE error values for the prediction models based on the FEDS method and the original spectra for each physicochemical 

property are shown for a reference [17,18]

logD logP logS

Method Cut-off RMSE Method Cut-off RMSE Method Cut-off RMSE

PoSF 0.15 1.1980 BS 0.15 0.6215 BS 0.10 0.6023

DF 0.0050 1.2610 DF 0.0050 0.8419 PoSF 0.15 0.6864

BS 0.15 1.4212 PoSF 0.25 0.9978 DF 0.0005 0.6998

DF 0.0005 1.4652 BS 0.10 1.0394 PrSF 0.25 0.7390
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Compared to the methods developed in our previous 
paper, the methods discussed here showed lower RMSE 
error values for the prediction models of logP and logS. 
This was particularly the case for logS, where all methods 
and cut-offs tested, except the PRSF method, showed low-
er RMSE error values. For logD, the methods discussed in 
this paper showed slightly higher RMSE error values.

Conclusions
This article discusses the use of the Savitzky-Golay fil-
ter and derivatives in the creation of a new type of mo-
lecular representation based on molecular structure 
and FTIR spectra. This is a particularly important topic 
due to the growing interest of in silico methods in the 
pharmaceutical, cosmetic, and agrochemical indus-
tries, among others. The use of in silico methods can 
significantly reduce the time and cost of developing 
new compounds with desired bioactive properties. 

In summary, the use of the Savitzky-Golay filter and 
derivatives had a positive effect on the quality of the 
resulting prediction models compared to the FEDS 
transformation for all of the physicochemical parame-
ters compared. Compared to models based on original 
spectra, the positive effect of the SG filter and deriv-
atives was evident only for predictive models for logS 
and to a lesser extent for logP. All these observations 
show that the application of the SG filter and deriva-
tives for new fingerprint representation has great po-
tential and is a good direction for the development of 
this particular in silico method.
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Appendix 1

Table A1. 103 compounds used in this paper as a dataset

No. SMILES code logP logD logS

1 CC(C)(\N=N\C(C)(C)C#N)C#N 1.27 1.27 −1.42

2 NC1=C(O)C=C(C2=C1C=CC=C2)S(O)(=O)=O 0.79 −1.37 0.01

3 NC1=CC(O)=C(C=C1)C(O)=O 0.83 −2.23 1.08

4 CCOC(=O)C(NC(C)=O)C(=O)OCC −0.33 −0.33 −1.29

5 NC1=CC2=C(C=CC=C2)C(=C1)S(O)(=O)=O 1.09 −1.06 0.01

6 COC1=C(N)C=CC(=C1)N(=O)=O 0.93 0.93 −1.68

7 CCOC(CCCN)OCC 0.67 −1.93 2.05

8 OC1(OC2C(=O)NC(=O)NC2=O)C(=O)NC(=O)NC1=O −2.85 −5.35 1.16

9 CC(=O)NC1=CC=C(N)C=C1 0.38 0.38 −1.36

10 [H]C(=O)C1=CC=C(NC(C)=O)C=C1 0.92 0.92 −1.49

11 CC1=C(N)C=CC(=C1)N(=O)=O 1.6 1.6 −1.93

12 CC(=O)NC1=CC=CC=C1 1.21 1.21 −1.52

13 CC(=O)OC1=CNC2=CC=C(Br)C=C12 2.45 2.45 −3.69

14 [H]C(=O)C1=CC=C(Br)C=C1 2.45 2.45 −2.47

15 CC1=CC(Br)=CC=C1 3.26 3.26 −3.04

16 [O−]C1=CNC2=CC=C(Br)C(Cl)=C12 3.14 3.12 −3.7

17 CCOC(=O)CCC(=O)OCC 0.61 0.61 −0.38

18 [Na+],[O−]S(=O)(=O)C1=CC=CC=C1 1.15 −1.22 −1.8

19 BrC1=CC2=C(NC=C2)C=C1 2.84 2.84 −3.45

20 O=C(OOC(=O)C1=CC=CC=C1)C1=CC=CC=C1 3.95 3.95 −4.29

21 O=C(C1=CC=CC=C1)C1=CC=CC=C1 3.43 3.43 −3.73

22 ClS(=O)(=O)C1=CC=CC=C1 1.92 1.92 −2.17

23 BrC1=CC=CC=C1 2.74 2.74 −2.51

24 C(NC1=CC=CC=C1)C1=CC=CC=C1 3.17 3.17 −3.04

25 C(N1CCNCC1)C1=CC=CC=C1 1.38 −0.47 1.08

26 CCOC(=O)C1=CC=CC=C1 2.33 2.33 −2.03

27 [H]C(=O)C1=NC2=C(C=CC=C2)C=C1 2.51 2.52 −2.16

28 CC1=C(C=CC=C1Cl)N(=O)=O 3.03 3.03 −2.88

29 OC(=O)C1=CC2=C(C=CC=C2)N=C1C(O)=O 0.37 −4.01 0.01

30 BrC1CCCCC1 2.82 2.82 −2.38

31 [H]C(=O)C1=CC=C(Cl)C=C1 2.29 2.29 −2.07

32 ClC(=O)C1=CC=C(Cl)C=C1 2.77 2.77 −3.2

33 OC(=O)C1=CC=CN=C1Cl 1.24 −2.1 0.21

34 [H]C(=O)C1=CC=NC2=C1C=CC=C2 1.84 1.84 −1.93

35 ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O 2.58 2.58 −3.94

36 ClC1=NC=CC=N1 0.96 0.96 −1.65

37 OC(=O)C1=C(Cl)C=CC=C1 2.23 −1.23 0.01
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38 O=C(N1C=CN=C1)N1C=CN=C1 −0.95 −0.95 −0.59

39 CN1C(=O)CC(=O)N(C)C1=O −0.82 −3.14 1.38

40 C(N1CCNCC1)C1=CC=CC=C1 1.41 1.2 −0.64

41 C(C1=CC=CC=C1)C1=CC=CC=C1 4.07 4.07 −3.35

42 NC1=CC2=C(C=CC=C2)C=C1N 1.3 1.3 −2.93

43 ClC1=CC=CC(=C1Cl)N(=O)=O 3.12 3.12 −3.36

44 CC1=CC(=C(O)C(=C1)C(C)(C)C)C(C)(C)C 5.27 5.27 −4.38

45 NC1=C(Cl)C=CC=C1Cl 2.35 2.35 −2.75

46 [H]N(C1CCCCC1)C1CCCCC1 3.41 0.29 0.01

47 ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O 1.43 1.43 −3.03

48 CCCCCCCCCCCCCCCCCCCC(O)=O 8.03 5.62 −6.22

49 COC1=C(O)C=CC(CC=C)=C1 2.61 2.61 −2.26

50 NC(CC1=CC=CC=C1)C(O)=O −1.18 −1.19 −1.37

51 OC(=O)C1=C(C=CC=C1)C(O)=O 1.29 −4.1 0.39

52 NC(CCC(=O)NC(CS)C(=O)NCC(O)=O)C(O)=O −4.88 −8.08 0.95

53 COC1=CC=CC(C=O)=C1O 1.87 1.86 −0.94

54 NC(CC1=CNC2=CC=C(O)C=C12)C(O)=O −1.39 −1.4 −1.81

55 OCCN1CCOCC1 −0.72 −0.73 1.05

56 OCCN(CCO)CC(O)=O −4.44 −4.45 0.98

57 OC(=O)CC1=CNC2=C1C=CC=C2 1.71 −0.96 0.1

58 OC(=O)CCCC1=CNC2=C1C=CC=C2 2.6 0.1 0.01

59 N1C=CN=C1 −0.15 −0.24 0.04

60 CC(C)C1=NC=CN1 1.22 1.01 −0.42

61 NC1=CC=C(I)C=C1 2.07 2.07 −2.32

62 O,[H][C@@]12CC[C@](CS(O)(=O)=O)(C(=O)C1)C2(C)C 0.98 −1.39 0.82

63 [H][C@]12CC[C@](C)(C(=O)C1)C2(C)C 2.55 2.55 −1.95

64 CN1C=NC2=C1C(=O)N(C)C(=O)N2C −0.55 −0.55 −0.44

65 OC1C2=CC=CC=C2OC2=C1C=CC=C2 2.52 2.52 −3.24

66 CNCC(O)C(O)C(O)C(O)CO −3.4 −5.11 2.94

67 COC1=C(N)C=CC(=C1)N(=O)=O 0.93 0.93 −1.68

68 CCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO 6.86 6.86 −8.51

69 COC1=CC=C(CO)C=C1 1.05 1.05 −0.93

70 OCC1=CC=C(C=C1)N(=O)=O 1.15 1.15 −1.34

71 ClC(=O)C1=CC=C(C=C1)N(=O)=O 2.1 2.1 −2.87

72 OC(=O)C1=C(C=CC=C1)N(=O)=O 1.57 −1.96 0.07

73 ClCC1=C(C=CC=C1)N(=O)=O 2.5 2.5 −2.63

74 O=C1OC(=O)C2=C1C=CC=C2N(=O)=O 1.36 1.36 −2.85

75 OC(=O)C1=CC=CN=C1 −0.17 −2.88 1.72

76 OC1(O)C(=O)C2=CC=CC=C2C1=O 0.45 0.4 −2.18

77 CCC1=C(C=CC=C1)N(=O)=O 2.87 2.87 −2.61
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78 OCC1CCCCN1 0.03 −2.35 2.25

79 OC1=C(C=C(C=C1N(=O)=O)N(=O)=O)N(=O)=O 1.49 −0.29 0.01

80 O=CC1=CC=C2OCOC2=C1 1.31 1.31 −1.8

81 O1C(=CN=C1C1=CC=C(C=C1)C1=NC=C(O1)C1=CC=C-
C=C1)C1=CC=CC=C1 5.04 5.04 −7.24

82 [Na]OS(=O)(=O)CCN1CCN(CCS(=O)(=O)O[Na])CC1 −0.55 −0.59 0.29

83 CC(C)(C)C(O)=O 1.58 −0.86 1.5

84 COC(=O)C1=CC=CC=C1O 2.32 2.32 −1.29

85 NC(=O)C1=C(O)C=CC=C1 1.17 1.11 −1.1

86 NC1=CC=C(C=C1)S(N)(=O)=O −0.25 −0.25 −1.17

87 OC(=O)C1=CC(=CC=C1O)S(O)(=O)=O 1.16 −4.72 1.17

88 OC(=O)C(Cl)(Cl)Cl 1.53 −2 0.07

89 N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O −1.09 −1.09 0.6

90 O=C1CCC2=CC=CC=C2C1 2.25 2.25 −1.49

91 CC1=C(C=CC=C1)S(O)(=O)=O 1.67 −0.71 0.6

92 CC1=CC=C(C=C1)S(Cl)(=O)=O 2.43 2.43 −2.7

93 OC(=O)C1=CC(=CC(=C1)C(O)=O)C(O)=O 0.95 0.03 0.26

94 OC(=O)C1=CC=C(C=C1)C(O)=O 1.29 −4.91 0.39

95 CN1C2=C(NC=N2)C(=O)N(C)C1=O −0.77 −0.89 −0.82

96 OC(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 4.64 4.64 −4.46

97 CCCCCCCCN(CCCCCCCC)CCCCCCCC 9.5 6.34 −5.7

98 [H]C(=O)C1=CC(OC)=C(OC)C=C1 1.37 1.37 −1.39

99 [H]C(=O)C1=CC(OC)=C(O)C=C1 1.22 1.08 −0.81

100 BrCCN1C(=O)C2=CC=CC=C2C1=O 1.77 1.77 −3.46

101 COC1=CC=C(CCN)C=C1OC 1.07 −1.24 0.86

102 CN1N(C(=O)C=C1C)C1=CC=CC=C1 1.22 1.22 −1.58

103 C1CN2CCN1CC2 −0.13 −2.47 2.82
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Appendix 2

Table A2. The dictionary with the definition of each bit position in the proposed FTIR fingerprint  
and the corresponding vibration ranges of the functional groups (ν – stretching vibration; δ – deformation vibration)

Position 
number Chemical bond

Absorption 
band interval 

[cm–1]
SMARTS code SMARTS  

code visualization

1 Any band 4000–3700  

2 νO–H 3700–2500 *~[#8] 

3 νO–H in the SiOH group 3700–3200 [#14]−[#8] 

4 νO–H diluted alcohols and phenols  
(without HB) 3700–3580 *~[#6]−[#8] 

5 νO–H diluted alcohols and phenols (HB) 3550–3200 *~[#6]−[#8] 

6 νO–H diluted oximes 3650–3590 *−[#6](−[*])=[#7][#8] 

7 νO–H diluted carboxylic acid dimers 3300–2500 *~[#6](=[#8])[#8] 

8 ν N–H 3500–2800 *~[#7] 

9 νN–H primary amides 3450–3200 [#8]=[#6]−[#7] 

10 νN–H secondary amides 3500–3400 [#8]=[#6]−[#7][#6]~* 

11 νN–H primary amines 3550–3300 *~[#6]−[#7] 

12 νN–H secondary amines 3350–3300 *~[#6]−[#7][#6]~* 

13 νN–H solid primary amines 3400–3100 [#8]=[#6]−[#7] 

14 νN–H solid secondary amines 3330–3060 [#8]=[#6]−[#7][#6]~* 
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Position 
number Chemical bond

Absorption 
band interval 

[cm–1]
SMARTS code SMARTS  

code visualization

15 νC–H 3100–2700 *~[#6] 

16 νC–H alkynes 3300–3250 *−[#6]#[#6] 

17 νC–H alkenes 3100–2950 *−[#6]=[#6] 

18 

νC–H 

cycloalkane 

3100−2990

[#6;R] 

19 romatic com-
pound [c;R]

20 

νC–H heteroaromatic 
compounds

pyridines

3080−3000

[c]@;:[#7] 

21 pyrazine [#7]@;:[c]@;:[c] @;:[#7] 

22 pyrroles [c]@;:[#7]@;:[c] 

23 furans [c]@;:[#8]@;:[c] 

24 thiophene [c]@;:[#16]@;:[c] 

25 νC–H tertiary groups 2990–2880 [#6](−[#6])(−[#6])(−[#6]) 

26 νC–H alkanes 2970–2840 *~[#6] 

27 νC–H in aldehyde groups 2830–2695 *−[#6]=[#8] 

28 νS–H thiols 2830–2700 [#6]−[#16] 

29 νC≡N nitriles 2300–2200 [#6]#[#7] 
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Position 
number Chemical bond

Absorption 
band interval 

[cm–1]
SMARTS code SMARTS  

code visualization

30 

νX≡Y X=Y=Z  
(X,Y,Z=N,C,O,S) 2280–2000 

[#6]#[#7] 

31 [#7]#[#16] 

32 [#6]#[#16]

33 [#6]=[#16]=[#8]

34 [#7]=[#6]=[#8] 

35 [#6]=[#16]=[#7] 

36 [#7]=[#6]=[#16] 

37 [#6]=[#7]=[#8] 

38 [#7]=[#16]=[#8] 

39 νC≡C alkynes 2270–2100 [C]#[C] 

40 νC=C=C cumulative alkenes 2000–1900 [C]=[C]=[C] 

41 νC=O 1870–1540 [#6]=[#8] 

42 νC=O acyl chlorides 1815–1750 [#6]−[#6](=[#8])[#17] 

43 νC=O lactones 1800–1730 [#8]@;!:[#6]=[#8] 

44 νC=O acid esters 1740–1720 [#6](=[#8])−[#8]−* 

45 νC=O aldehydes 1740–1720 *−[#6]=[#8] 
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Position 
number Chemical bond

Absorption 
band interval 

[cm–1]
SMARTS code SMARTS  

code visualization

46 νC=O ketones 1730–1700 [#6]−[#6](=[#8])[#6] 

47 νC=O carbonyl acids (dimers) 1720–1700 *~[#6](=[#8])[#8] 

48 νC=O secondary amides 1710–1660 [#8]=[#6]−[#7][#6]~* 

49 νC=O primary amides 1690–1620 [#8]=[#6]−[#7] 

50 νCH–CF₂ and CF=CF₂ 1790–1750 [#6]~[#6]~[#9] 

51 νC=C 1680–1550 [#6]=[#6] 

52 νC=C alkenes 1680–1630 [C]=[C] 

53 

νC=C 

cycloalkenes

1660−1550 

[#6]=;@;!:[#6] 

54 vinyl ethers *~[#6]=[#6][#8]~* 

55 νAr–C=C 1650–1600 * 
~@:~*(@:*)[#6]=[#6] 

56 νNO2 1661–1260 [#8]~[#7]~[#8] 

57 νNO2 asymmetric 1661–1500 [#8]~[#7]~[#8] 

58 νNO2 symmetric 1390–1260 [#8]~[#7]~[#8] 

59 δN–H 1650–1500 *~[#7] 

60 δN–H primary amines 1650–1580 *~[#6]−[#7] 
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Position 
number Chemical bond

Absorption 
band interval 

[cm–1]
SMARTS code SMARTS  

code visualization

61 δN–H secondary amines 1650–1550 *~[#6]−[#7][#6]~* 

62 δN–H primary amides 1620–1590 [#8]=[#6]−[#7] 

63 δN–H secondary amides 1570–1510 [#8]=[#6]−[#7][#6]~* 

64 δN–H lactams 1600–1500 [#7]@;!:[#6]=[#8] 

65 

νC=N 

imines 

1650−1500 

*~[#6]=[#7]-* 

66 oximes *~[#6]=[#7]-[#8] 

67 ν Ar 1620–1560 c1ccccc1 

68 δC–H 1470–1350 *~[#6] 

69 δC–H cycloalkanes 1470–1440 [#6;R] 

70 δC–H geminal dimethyl groups 1400–1350 [#6]−*(−[#6])(~*)(~*) 

71 
δC–H 

alkanes 
1470−1350 

*~[#6] 

72 alkynes *-[#6]#[#6]

73 δO–H 1430–1330 *~[#8] 

74 νS=O 1350–1030 [#16]=[#8] 

75 νS=O asymmetric sulfones 1350–1300 [#8]=[#16]=[#8] 
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Position 
number Chemical bond

Absorption 
band interval 

[cm–1]
SMARTS code SMARTS  

code visualization

76 νS=O symmetric sulfones 1160–1120 [#8]=[#16]=[#8] 

77 νS=O sulfonates 1195–1150 [#8]=[#16](−[#8])[#8−] 

78 

νS=O stretching

sulfoxides 
alkyl

1070−1030 

[#8]=[#16]-[C] 

79 aryl [#8]=[#16]-[c]

80 νC–O 1320–1000 [#6]−[#8] 

81 

νC–O stretching

carbonyl acids 

1320−1210

*~[#6](=[#8])[#8] 

82 aromatic acid 
esters [c]-[#6](=[#8])[#8]-*

83 νC–O alcohols 1260–1000 [#6]−[#8] 

84 νC–O aliphatic esters 1150–1000 [#6]−[#8]−[#6] 

85 νC–N stretching 1420–1020 [#6]−[#7] 

86 νC–N primary amides 1420–1400 [#8]=[#6]−[#7] 

87 νC–N secondary amides 1300–1200 [#8]=[#6]−[#7][#6]~* 

88 νC–N diluted aromatic amines 1340–1260 [c]−[#7] 
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Position 
number Chemical bond

Absorption 
band interval 

[cm–1]
SMARTS code SMARTS  

code visualization

89 νC–N diluted aliphatic amines 1250–1020 [C]−[#7] 

90 νC=S thioamides 1100–1050 [#7]−[#6]=[#16] 

91 νC–F monofluorinated compounds 1100–1000 [#6]−[#9] 

92 νSi–O–Si siloxanes 1100–1000 [#14]−[#8]−[#14] 

93 νP–O–C aliphatic phosphates 1090–1000 [#15]−[#8]−[C] 

94 νN–O oximes 960–930 *~[#6]=[#7]−[#8] 

95 νC–O–C epoxides 950–810 [#6]1−[#8]−[#6]1 

96 νSi–CH₃ 860–750 [#14]−[#6] 

97 νC–X (X=Cl, I, S, Br) 850–460 [#6]−[#17,#53,#16,#35] 

98 νC–Cl 850–550 [#6]−[#17] 

99 νC–S 700–570 [#6]−[#16] 

100 νC–Br 700–500 [#6]−[#35] 

101 νC–I 600–460 [#6]−[#53] 
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Appendix 3

Figure A3. The KNIME workflow used in the study
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