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On certain weighted Schur type inequalities
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Abstract

In this note we give sharp Schur type inequalities for univariate polynomials with
convex weights. Our approach will rely on application of two-dimensional Markov
type inequalities, and also certain properties of Jacobi polynomials in order to prove
sharpness.

1. Introduction

In all what follows, R stands for the sets of real numbers, N denotes the set of all
natural numbers {1, 2, 3, ...}, Ny = {{ € N: [ > 2}. We denote by P,(RY) the
space of all polynomials of N real variables with real coefficients of degree at most
n. We write P, instead of P,(R'). Let L,(Q), 1 < p < oo, be the space of all
Lebesgue-measurable functions f on Q C R™ such that

11120 = ( / F@)P da)? <00 if 1<p< oo
(9]

In approximation theory Schur and Markov type polynomial inequalities con-
stitute an important subject, see e.g. [7, 12]. The classical inequality of Schur
states that

1Pll-1y < (n+ DIIVI = 22 Pll_1,y

where ||f||x := sup,eg | f(z)]. This can be generalized to weights (1 — 22)? with
B8 >1/2 as well (see [1], Lemma 2.4, p. 73):

1Pl < CB)n*°[|(1 — 2®)° Plli-1y

(P € Pn), (1)

(P €Py).

The classical Markov inequality for univariate algebraic polynomials of degree
n gives the following sharp upper bounds for their derivatives:
2n?
1P Mo < 53— 1P lliai- (2)
There are many generalizations and variations of the classical inequality of Schur
and the classical Markov inequality, see recent work in [2, 4, 5. 6, 9, 10, 11, 13] and
[14]. In order to verify our main result we shall need the following generalization
of the classical Markov inequality.
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Theorem 1.1 Let f: (—1,0] — (0,00) be a C?((—1,0)) function and there exists
—1 < n <0 such that f|_1,) is convex function so that

lim f'(z)= lim f(z)=0.

z——1*1 z——1*t

Suppose that there exists a constant k € Ny such that (f)Y* is a concave function
on the interval (—1,n). Let

K={(e,y) R i -1 <z <1,0<y< f(—Jal)}.
Then, for every 1 < p < oo, there exists a constant C > 0 such that
0P
Jdy

for n € Ny and every polynomial P € P, (R?).

2

n
) < CWIIPHMK)- (3)

Ly(K

The above theorem can be proved by using techniques similar to those used in [3].
Another way, the inequality (3) can be proved using the main result of [11]. This
is how we get

1

O ||PllL,x0)-
1+ 1) 10

IN

oP
dy

(K)
Then using the propertics of the function f it can be shown that
2
! <k n .
F—1+ 1) = U=+ 1)

Our goal is to establish a certain generalization of (1) by using (3).

2. Main results

This scction addresses main theorems.

Theorem 2.1 Let f: (—1,0] — (0,00) be a C?((—1,0)) function and there exists
—1 < n <0 such that f|(_1,) is convex function so that
li () = lin = 0.
A S = 7
Suppose that there exists a constant k € Ny such that (f)Y/*
on the interval (—1,n). Let

w(z) = { F(=lal) iz e (=11

is a concave funclion

0 otherwise.
Then, for every 1 < p < oo, there ezists a constant B > 0 such that

B "
f'(=1+1/n?)
for n € Ny and every polynomial P € P,.

[Pl gy < [w PP Ly -1,- (4)
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Proof. Let P € P, and consider the polynomial Q(z,y) = yP(x). It is clear that
99 — p Lot K= {(z,y) €eR?>: =1 <2 <1,0<y< f(—|z])}. Then, by (3), we

have
H bt 1 1@z, k)
9y ||, 00 = T 1)
Hence
[ o s s (refialgs) [ e
Therefore

! » C(n+1)? Pt () »
[ wenrer as (G [ ver@r e

Now we wish to prove that there exists a positive constant D such that

(n+1)> n?
f(=141/(n+1)%) = fl(=1+1/n%)

It ﬁ — 1 < n then, by the assumptions

lim f(a) = lim f(x) =

z——1% z——1*1
and (f)Y* is a concave function on the interval (—1,7),

P ) < BR(-1 1),

(”*ﬁ P14 1/ 1)) > f(—1+ 1/nd).

n
By the fact that f is convex, we have

fl(=1+1/(n+1)*) > (1 +n)?f(-1+1/(1+n)?).
Thus,

L 10+ 1)

f(=1+1/n?
(1+n)? '

n2

> (6)
It now follows from (6) that (5) holds with D = Ck4*, which completes the proof.
The next theorem shows that the inequality (4) is asymptotically sharp.

Theorem 2.2 Let f k and w be as in Theorem 2.1. Then, for every 1 < p < 00
and n € Ny, there exist a positive constant By > 0 and a sequence of polynomials
U, € P, such that

n2

[w P Ul (a2 Blm

[0 P U 1 (-1, (7)
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Proof. Let Uy(z) = P (=z). Here P denotes the Jacobi polynomial of
degree n associated with paramcters w, 0. Then

-1+

o2y = [ @IS o ®)

With clementary changes of variables, we arrive at the following cquation

[T el cop s = [T - iR o

1

By making the change of variable ¢ = 5%, we obtain

[ =010 - op e = 5 [ ) - DR - ()P
0

(10)
where 7,(2) = 525 By the formula of Mchler-Heine type (see [13], Theorem 8.1.1.)

n“pP

> T (/20 E) — YT+ 2

Sl PEO(1 = ()P >

for w > 0, and all sufficiently large n. Here J,(2) is the Bessel functions of the
first kind. Let g,(2) = 7,(2) — 1. Since

w 1 22 B w
i {(/2) (=)} 2 iy {F(w+ N 4F(w+2)} T T(w+2)

we have
4w —
P(WW) p > (- - n“P— 2

Then integration by parts shows that

/fgn —2f(—1+1/n%) / 2f'(gnlz

If z € (=1,n) then kf(z) > (1 + 2) f'(x). This leads to

(11)

i 2f(=1+1/n?) _ 2f(=1+1/n%) .
/ flgn(2)) dz > | > R D) (12)
From (8)-(12) we sce that
1/p P 4o — 1 p 2an_4f/(—1 + ]_/n2)
Hw UnHL,,([qJ]) = <4F(w+2)> k(k 1+ 1) : (13)

On the other hand, by the assumption on f, there exists M > 0 such that

w0 gy <27 [P ) (14)

n
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Applying certain properties of Jacobi polynomials P verified in [13], (7.32.5),
p- 169, one can show that there exists A > 0 such that

-1
/ | P& (—g) P da < An~P/? (15)
7

If —1 < =1+41/n* <nthen 5 f' (=14 1/n?) > f(—=1+1/n?). By the fact that
(f)V* is concave on the interval (—1,7), there exists an absolute constant A; > 0
stich that

Hence, by (15) and (14), there exists constant As > 0 such that

le/pHU"Hip([nﬁn]) < A, (f’(—l + 1/n2))p+1 nwp—4-2p (16)

for sufficiently large w. By the definition of w and the symmetry relation
PE (=2) = (—1)" P,
we have
1/p+1 _ 1/p+1
[/ UnHLP([—1,—1+1/n2]) = [|w"? U”HLP([l—l/nz,l]) : (17)

Therefore, it is enough to consider the norm on one of these intervals. Since f|(_1,)
1S convex,

—1+-L

p n? w,w
le/pHUnHLP([71,71+1/n2]) < (f(=1+ 1/n2>)p+1/ | P (—)|P da.

-1

Henee

n
p w,w
| ULy < P 12 / [P ()P de.

By Theorem 4.5 of [8], there is an absolute constant D > 0 such that
1 1
[ PEcopd<p [ P ap .
-1 —141/n?

Thus

n
p w,w
| PO ey S DL 1) // e (=) de. (1)

Let p := arccos(—n) and ), := arccos(1 — 1/n?). Using the change of variables
r = — cos 8, we have

" P
/ | P& ()P da = / | P (cos B)|P sin 6 df. (19)
An

—1+1/n?
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Since sinz < z for > 0, we have

» P
| P (cos B)|P sin 6 df < | ) (cos 0) |6 d6. (20)
)\n >\’Il

Applying certain properties of Jacobi polynomials P verified in [13], (7.32.5),
p. 169, again, we conclude that there exists a natural number n; so that

p p
|PL“) (cos )P0 d§ < Dyn~ P/ / g Pt/ gg,
An n
for n > ny and appropriately adjusted constant Dy. Therefore,
P @) p )\—p(w+1/2)+2
PY)(cosH)[PdO < Dyn PP
,\n| n ) =t plw+1/2) -2
for sufficiently large w. One can verify casily that there exists a positive constant
D5 so that, for n > 2, % < Ds),. Hence,
p D, »
|P“) (cos ) PO df) < ————————(Dyn)*P~2. (21)
A, plw+1/2) —2
By (18)-(21), there is a constant D3 > 0 such that

[ U7 y < Ds(f(=141/n2)PHiner2,

—1,-1+1/n2
Using the assumption that f|_1,) is convex again yiclds

(F(=1+ 1/n2)PFpPo=2 < (f/(—1 + 1/n?))PHiner—2r=4,
Thus

[ O[5 < Dy(f/(=1+ 1/n?)PHiper—2=t, (22)
P

~1,-1+41/n2])
Combining (16), (17) and (22) leads to

p
[l U,

e S M2 +2D5)(f'(= 1+ 1/n?)PHiner=2r=t, (23)

The inequalities (23) and (13) give the desired result.

3. Concluding remarks

At the end of this article, we would like to make some comments related to the
techniques used in this work.

o LetkeN, k>2 If1 <r <k, then we can apply the main results (Theorem
2.1 and Theorem 2.2) 1o the following functions:

* fi(z) =bi(1+2)",
¢ o) = (14 2)7 In(~ In(ba(1 + ).
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* fa(x) = —(1+2)" In(bs(1 + x)),
v fi(e) = (14 o) (— In(ba(1 + )"
* fs(x) = (1—2%)",

considered on (—1, 0] for appropriately adjusted constants by, by, bs, by and c.

The techniques used in this paper can be applied to the more general func-
tions. Using the higher-dimensional equivalent of Theorem 1.1, we can infer
a corresponding generalization of the Schur type incquality.

The work is devoted to univariate polynomials. Nevertheless, in many cases
the problem of finding the analog of inequality (3) for higher dimensional

T. Beberok

domains can be reduced to a two dimensional situation.

Here are some

cxamples:
# {(zy) ER?:0<a <1, ark <y<a}x (0,17
s {(z,y) eR™ o] <1, aloft <y < o'}
x {x € R™ a < |z [F 4|z +. .+l o] 2] +. Ao | < 1,
* {(z,y,2) e RP*:0< 2 < lar" <y <a", Az +By+C; < z <

for every k,m € N, r, A, B,C1,Cy € Rsothat K > 2, r <k, 0<a<1,
Ci < Cyand Av+ By +C, >0if0 <2 <1, ar¥F <y < 2". Here

2] = /2 + 23+ ..+ 22,

This then we can use to prove an analogs of inequality (4).
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