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Abstract
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the uniform approximation and approximation in Lp norms with respect to measures 
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Polynomial approximation of regular functions
of a quaternionic variable

Abstract

We consider Bernstein-Walsh-Siciak-type theorems on the polyno-
mial approximation in the case of regular functions of one quater-
nionic variable and their applications to the uniform approximation
and approximation in Lp norms with respect to measures satisfying
the Bernstein-Markov condition.
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1 Introduction

The analytic continuation of a function f : Cn ⊃ E �→ C and the rate of conver-
gence of polynomials approximating function f in the uniform norm on a compact
set E was studied in the case of one and several complex variables by Bernstein,
Walsh, Siciak and other autors (see [8] and references given there). In this paper
we prove analogues of the Bernstein-Walsh-Siciak theorem in the case of regular
function f : H ⊃ E �→ H of one quaternionic variable, see Theorems 5.1 and 6.1.
Next we consider also relationship between leading terms t̂n(q) = qnan of polyno-
mials tn(q) = a0 + qa1 + · · · + qnan approximating function f : H ⊃ E �→ H and
regularity of f in an open neighbourhood of the set E, see Propositions 7.1 and
7.2. We also propose certain sufficient conditions for regularity of f expressed by
the distribution of points qnk appearing in the factorization of the polynomials of
the best approximation

tn(q) = (q − qn1) ∗ (q − qn2) ∗ · · · ∗ (q − qnn)ann,

see Propositions 8.1, 8.4 and 8.5.

2 Preliminaries

Let H be the field of real quaternions with elements q = x0 + ix1 + jx2 + kx3,
where the numbers x0, x1, x2, x3 are real, and i, j, k are imaginary units, i.e. their
square equals −1 and ij = −ji = k, jk = −kj = i and ki = −ik = j. We donote
by �q := x0 the scalar (or real) part and by �q := ix1 + jx2 + kx3 the vector (or
imaginary) part of the quaternion q. Let

S := {q = x0 + ix1 + jx2 + kx3 ∈ H : x0 = 0, x21 + x22 + x23 = 1}

1
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be the unit sphere of purely imaginary quaternions. The elements I ∈ S are
called imaginary units as I2 = −1. In particular, i = (0, 1, 0, 0), j = (0, 0, 1, 0),
k = (0, 0, 0, 1) ∈ S.

One may prove that q1q2 = q2 q1, where q := x0 − ix1 − jx2 − kx3 = �q − �q
is the conjugate of the element q = x0 + ix1 + jx2 + kx3 = �q + �q. Then
qq = qq = x20+x21+x22+x23. Observe that |q| := (qq)1/2 is a norm of the quaternion
q. We have also q = |q|(cosϕ + q̂ sinϕ) for an angle ϕ ∈ [0, π] where q̂ is the axis
of q defined by q̂ := 1

|q| sinϕ(ix1 + jx2 + kx3) =
�q

|q| sinϕ if |�q|2 = x21 + x22 + x23 �= 0,
or q̂ := i 0 + j 0 + k 0, otherwise.

We consider the set Hd[q] := {
∑d

n=0 q
nan, an ∈ H} of regular polynomials of

one quaternionic variable q of degree less or equal d with coefficients on the right
side of the monomials qn and the set H[q] =

⋃∞
d=0Hd[q] of all regular polynomials

of one quaternionic variable q ∈ H. Following [4] we define the regular product ∗
of polynomials f(q) =

∑m
k=0 q

kak and g(q) =
∑n

l=0 q
lbl:

f ∗ g(q) :=
mn∑
p=0

qpcp, where cp =
∑

k+l=p

akbl. (1)

Observe that the regular product p1 ∗ p2 of elements p1 ∈ Hk[q], p2 ∈ Hl[q] is
an element of Hk+l[q] while the simple product p1 p2 of the factors p1 and p2 need
not be an element of the set H[q]:

(q − j) ∗ (q − k) = q2 − q(j + k) + jk ∈ H[q],

(q − j) (q − k) = q2 − jq − qk + jk /∈ H[q],

which is due to noncommutability of quaternions.
By the Eilenberg-Niven theorem (known also as the quaternionic version of

the Fundamental Theorem of Algebra) one may factor each polynomial in a quater-
nionic variable. In particular, for each regular quaternionic polynomial

f(q) = a1 + qa1 + q2a2 + · · ·+ qnan ∈ Hn[q]

there are quaternions q1, q2, . . . , qn such that

f(q) = (q − q1) ∗ (q − q2) ∗ · · · ∗ (q − qn)an (2)

(see [5], Theorem 3.18, Corollary 3.19).
In the following discussion, we will call the elements of the set H[q] just poly-

nomials, omitting the word regular.
Observe that the factorisation (2) need not be unique nor the numbers q2,

q3,. . . , qn do not have to be zeroes of the factored polynomial. Let us recall two
known examples (see eg. [4]).

Example 2.1 The polynomial p(q) = (q − i) ∗ (q − 2j) can also be factored as

p(q) =

(
q − 8i+ 6j

5

)
∗
(
q − 4j − 3i

5

)
.
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Example 2.2 Let p(q) = (q − j) ∗ (q − k) = q2 − q(j + k) + jk. We have

p(j) = j2 − j(j + k) + jk = 0

p(k) = k2 − k(j + k) + jk = 2jk �= 0.

Even if the rest of the points q2, q3, . . . qn in factorisation (2) are not the
zeroes of the polynomial, they are related to them (see [7]). Namely, consider the
equivalence class of the the quaternion q0 ∈ H

[q0] := {q ∈ H : there exists a ∈ H : a−1qa = q0}.

One may prove the following remark (see [7], Proposition 4).

Remark 2.3 If f(q) = (q − q1) ∗ (q − q2) ∗ · · · ∗ (q − qn) then

Zero(f) ⊂ [q1] ∪ [q2] ∪ · · · ∪ [qn],

where Zero(f) = {q ∈ H : f(q) = 0}.

3 Regular functions

An extensive survey of the theory of regular functions of one quaternionic variable
is presented in [5] and we restrict ourselves to the necessary definitions and prop-
erties of regular functions. For I ∈ S we donote by LI the complex plane passing
through the origin and containing 1 and I, i.e. LI := R+ IR. Following [5] we say
that a domain Ω ⊂ H that intersects the real axis is called a slice domain if, for
all imaginary units I ∈ S, the intersection ΩI := Ω ∩ LI with the complex plane
LI is a domain of LI . A real differentiable function f : Ω �→ H, defined on a slice
domain Ω ⊂ H, is called regular if for every I ∈ S its restriction fI to the complex
line LI is holomorphic on ΩI (see [5], Definition 1.1), i.e.

∂̄If(x+ yI) :=
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ yI) ≡ 0 on ΩI .

It is known (see [3]) that the monomial qna with a ∈ H is regular as well as the
sum of regular functions is regular.

A set T ⊂ H is called symmetric if for all points x + Iy ∈ T , with x, y ∈ R
and I ∈ S, the set T contains the whole sphere x + yS, see [5], Definition 1.14.
Symmetric slice domains play an important role in the theory of regular functions.
We recall the following lemma (see [5], Lemma 1.22):

Lemma 3.1 Let Ω ⊂ H be a symmetric slice domain and let I ∈ S. If fI : ΩI �→ H
is holomorphic then there exists a unique regular function g : Ω �→ H such that
gI = fI in ΩI .

3
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and I ∈ S, the set T contains the whole sphere x + yS, see [5], Definition 1.14.
Symmetric slice domains play an important role in the theory of regular functions.
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3

As a consequence one may obatain the extension theorem for regular functions,
see [5], Theorem 1.24.

Theorem 3.2 Let f be a regular function on a slice domain Ω. There exists
a unique regular function f̃ : Q̃ �→ H that extends f to the symmetric completion
of Ω, i.e. to the set

Ω̃ :=
⋃

x+yI∈Ω
(x+ yS).

Consider the set of power series

∞∑
n=0

qnan, an ∈ H. (3)

endowed with the natural uniform convegence on compact sets. Observe that if
R := (lim supn→∞

n
√
|an|)−1 then the series (3) converges uniformly on compact

subsets of B(0, R) := {q ∈ H : |q| < R} to a regular function f(q) =
∑∞

n=0 q
nan

in B(0, R) and diverges if |q| > R, see [5], Theorem 1.6. We define the regular
product ∗ of the series f(q) =

∑
k q

kak and g(q) =
∑

l q
lal similarily as the regular

product of polynomials (1):

f ∗ g(q) :=
∑
m

qm
∑

k+l=m

akbl (4)

The regular product f ∗ g is regular in B(0, R) if f, g are regular in B(0, R). One
may also prove the proposition (see [5], Proposition 1.28).

Proposition 3.3 The set of regular functions on a symmetric slice domain Ω ⊂ H
is a noncommutative ring with respect to + and ∗. In particular polynomials H[q]
are regular in H.

One may define a distance σ : H×H �→ R (see [5])

σ(p, q) =

{
|p− q|, if p, q lie on the same complex line LI

ω(p, q), otherwise
(5)

where
ω(p, q) =

√
(�p−�q)2 + (|�p|+ |�q|)2.

The topology τσ in H defined by the distance (5) is finer that the Euclidean
topology τd induced by the distance d(p, q) = |p − q|, see [5], Section 2.13. Let
Σ(c, R) := {q ∈ H : σ(c, q) < R} be the σ ball centered at c ∈ H of radii R > 0
(see Figures 1, 2, 3).

We say (see [5], Definition 2.13) that f : H ⊃ Ω �→ H is σ-analytic at c ∈ Ω if
there exists R > 0 and a regular power series

∑∞
n=0(q − c)∗nan, where

(q − c)∗nan := (q − c) ∗ (q − c) ∗ · · · ∗ (q − c)︸ ︷︷ ︸
regular product of n factors q−c

an,

4
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Figure 1: The sets Σ(ci, Ri) ∩ {x0 + ix1 + jx2 + kx3 ∈ H : x3 = 0} with c1 =
(−3,− 3

10
, 0, 0), c2 = (0,− 5

10
, 0, 0), c3 = (3,− 7

10
, 0, 0) and R1 = R2 = R3 =

13
10
.

such that f(q) =
∑∞

n=0(q − c)∗nan for q ∈ Σ(c, R). We say that f is σ-analytic in
Ω if it is σ-analytic at all c ∈ Ω.

Regularity and σ−analyticity are strictly related, see [5], Corollary 2.14.

Proposition 3.4 A quaternionic function is regular in a domain if and only if it
is σ-analytic in the same domain.

We recall the Splitting Lemma that is a crucial tool in the theory of regular
functions, see [5], Lemma 1.

Lemma 3.5 Let f be a regular function defined on an open set Ω. Then for
any I ∈ S and any J ∈ S with J ⊥ I, there exist two holomorphic functions
F,G : ΩI ∩LI �→ LI such that for every z = x+ yI we have fI(z) = F (z)+G(z)J.

As a consequence we obtain

Corrolary 3.6 Let Ω ⊂ H be a symmetric slice domain and let pn ∈ Hn[q] be
a sequence of polynomials converging uniformly on compact subsets of Ω to a
function f bounded on compact subsets of Ω. Then f is regular on Ω.

Proof. Let K ⊂ Ω be a compact. Fix I, J ∈ S, I ⊥ J . For n = 1, 2, 3, . . . by the
Splitting Lemma we get holomorphic functions Fn : Ω∩LI �→ LI , Gn : Ω∩LI �→ LI ,
such that pnI(z) = Fn(z) + Gn(z)J , and Fn, Gn are converging on compact sets
K ∩ LI to functions FI : Ω ∩ LI �→ LI , GI : Ω ∩ LI �→ LI holomorphic on

5
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is σ-analytic in the same domain.

We recall the Splitting Lemma that is a crucial tool in the theory of regular
functions, see [5], Lemma 1.
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any I ∈ S and any J ∈ S with J ⊥ I, there exist two holomorphic functions
F,G : ΩI ∩LI �→ LI such that for every z = x+ yI we have fI(z) = F (z)+G(z)J.

As a consequence we obtain

Corrolary 3.6 Let Ω ⊂ H be a symmetric slice domain and let pn ∈ Hn[q] be
a sequence of polynomials converging uniformly on compact subsets of Ω to a
function f bounded on compact subsets of Ω. Then f is regular on Ω.

Proof. Let K ⊂ Ω be a compact. Fix I, J ∈ S, I ⊥ J . For n = 1, 2, 3, . . . by the
Splitting Lemma we get holomorphic functions Fn : Ω∩LI �→ LI , Gn : Ω∩LI �→ LI ,
such that pnI(z) = Fn(z) + Gn(z)J , and Fn, Gn are converging on compact sets
K ∩ LI to functions FI : Ω ∩ LI �→ LI , GI : Ω ∩ LI �→ LI holomorphic on

5

Ω ∩ LI . Hence fI(z) = FI(z) + GI(a)J for z ∈ LI with holomorphic functions
FI , GI : Ω ∩ LI �→ LI . �

4 Polynomial extremal function

Following [8] we define polynomial extremal function of a non-empty compact
set E ⊂ H (called the Leja-Siciak polynomial extremal function in the case where
E ⊂ CN ) by

ΦE(q) := sup
{
|p(q)|1/deg p, p ∈ H[q], ||p||E ≤ 1

}
(6)

where
‖p‖E = sup{|p(q)|, q ∈ E}

is the supremum norm of the polynomial p(q) = a0+qa1+q2a2+ · · ·+qnan ∈ H[q]
on the set E.

Consider the polynomials pn(q) =
∑n

k=0(q−c)∗kak satisfying ‖pn‖E ≤ 1 on the

closure of the σ-ball Σ(c, R), i.e. on the set E := Σ(c, R) = {q ∈ H : σ(q, c) ≤ R}.
One may prove that

|(q − c)∗n| = |(q − c) ∗ (q − c) ∗ · · · ∗ (q − c)| ≤ σ(q, c)n

and limn→∞ |(q − c)∗n|1/n = σ(q, c), see [5], Proposition 2.10. Hence we get the
explicit formula for the polynomial extremal function of the set E.

Proposition 4.1 If E = {q ∈ H : σ(q, c) ≤ R} then

ΦE(q) := max

{
1,

σ(q, c)

R

}
.

In particular, for c = 0 we have σ(q, 0) = |q| and we get ΦE(q) := max{1, |q|R }.

Observe that function ΦE need not be continuous. For a finite set E :=
{a1, a2, . . . , am} ⊂ H, we have

ΦE(q) =

{
1, q ∈ E,

∞, q /∈ E.

We shall say that non-empty compact set E ⊂ H is L-regular if the polynomial
extremal function ΦE is continuous on H.

By the definition (6) we obtain the Bernstein-Walsh inequality (see [8] in the
case where E ⊂ Cn).

Proposition 4.2 Let pn(q) = a0 + qa1 + q2a2 + · · ·+ qnan ∈ Hn[q] and E ⊂ H be
a non-empty compact set. Then for any quaternion q ∈ H we have

|pn(q)| ≤ Φn
E(q)‖pn‖E . (7)

6
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In particular, we have

|pn(q)| ≤ Rn||pn||E for q ∈ ER

where ER := {q ∈ H : ΦE(q) ≤ R} for R ≥ 1 is a sublevel set of the function ΦE .

5 Bernstein-Walsh-Siciak theorem

Let us propose a version of the Bernstein-Walsh-Siciak theorem for function f :
H ⊃ E �→ H (see [8], Section 10, Theorem 1 for the case where f : Cn ⊃ E �→ C).

Theorem 5.1 Let E ⊂ H be a non-empty compact L-regular set and let f : E �→
H be a bounded function. Let pn ∈ Hn[q] be a sequence of polynomials. If there
exists R > 1 such that

lim sup
n→∞

||f − pn||1/nE ≤ 1

R
, for R > 1 (8)

then

1. the sequence pn converges uniformly in Er := {q ∈ H : |ΦE(q)| ≤ r} for
1 < r < R,

2. function f is regular in the interior of the set ER, i.e. there exists regular
function f̃ : Er �→ H such that f̃ = f on the set E.

Proof. We proceed as in the proof of Theorem 1 in [8], Section 10. Consider
the series p0+

∑∞
k=0(pk+1−pk). By Proposition 4.2, for the polynomial pn+1−pn ∈

Hn+1[q] we get the estimate

|pn+1(q)− pn(q)| ≤ ||pn+1 − pn||E Φn+1
E (q), for q ∈ H.

We have also
||pn+1 − pn||E ≤ ||pn+1 − f ||E + ||pn − f ||E

Chose ε > 0 such that

‖f − pn||E ≤
(
1 + ε

R

)n

for n > N , N = N(ε) being sufficiently large. We get

|pn+1(q)− pn(q)| ≤ 2

(
1 + ε

R

)n

Φn+1
E (q), for q ∈ H

and

|pn+1(q)− pn(q)| ≤ 2r

(
(1 + ε)r

R

)n

, for q ∈ Er.

Therefore the series p0 +
∑∞

k=0(pk+1 − pk) converges uniformly on Er. Since p0 +∑n
k=0(pk+1−pk) = pn the sequence of polynomials pn ∈ Hn[q] converges uniformly

to the function f on the set Er for 1 < r < R. By Corrolary 3.6 function f is
regular in the interior of the set ER.

�
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In particular, we have

|pn(q)| ≤ Rn||pn||E for q ∈ ER
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H ⊃ E �→ H (see [8], Section 10, Theorem 1 for the case where f : Cn ⊃ E �→ C).

Theorem 5.1 Let E ⊂ H be a non-empty compact L-regular set and let f : E �→
H be a bounded function. Let pn ∈ Hn[q] be a sequence of polynomials. If there
exists R > 1 such that

lim sup
n→∞

||f − pn||1/nE ≤ 1

R
, for R > 1 (8)

then

1. the sequence pn converges uniformly in Er := {q ∈ H : |ΦE(q)| ≤ r} for
1 < r < R,

2. function f is regular in the interior of the set ER, i.e. there exists regular
function f̃ : Er �→ H such that f̃ = f on the set E.

Proof. We proceed as in the proof of Theorem 1 in [8], Section 10. Consider
the series p0+

∑∞
k=0(pk+1−pk). By Proposition 4.2, for the polynomial pn+1−pn ∈

Hn+1[q] we get the estimate

|pn+1(q)− pn(q)| ≤ ||pn+1 − pn||E Φn+1
E (q), for q ∈ H.

We have also
||pn+1 − pn||E ≤ ||pn+1 − f ||E + ||pn − f ||E

Chose ε > 0 such that

‖f − pn||E ≤
(
1 + ε

R

)n

for n > N , N = N(ε) being sufficiently large. We get

|pn+1(q)− pn(q)| ≤ 2

(
1 + ε

R

)n

Φn+1
E (q), for q ∈ H

and

|pn+1(q)− pn(q)| ≤ 2r

(
(1 + ε)r

R

)n

, for q ∈ Er.

Therefore the series p0 +
∑∞

k=0(pk+1 − pk) converges uniformly on Er. Since p0 +∑n
k=0(pk+1−pk) = pn the sequence of polynomials pn ∈ Hn[q] converges uniformly

to the function f on the set Er for 1 < r < R. By Corrolary 3.6 function f is
regular in the interior of the set ER.

�

7

6 Polynomial approximation of regular func-

tions in Lp spaces

Let µ be a finite Borel measure on a non-empty L-regular compact set E ⊂ H.
Proceeding as in [1] we say that the pair (E, µ) satisfies Bernstein–Markov con-
dition (BM), if there exists p, 0 < p < ∞ such that for any ε > 0 there exists
A = A(ε, p) such that

‖f‖E ≤ A(1 + ε)deg f‖f‖µ,p (9)

for all polynomials f ∈ H[q], where

‖f‖µ,p =
(∫

E
|f(q)|pdµ(q)

)1/p

. (10)

Using Hölder’s inequality one may prove that if the pair (E, µ) satisfies (BM) for

one exponent p ∈ (0,∞), then it satisfies (BM) for all exponents p, 0 < p < ∞
(see [1], Remark 3.2). In particular, (10) defines a norm of f : E �→ H for p ≥ 1.

Let f : E �→ H be a Borel function that has the bounded norm ‖f‖µ,p < ∞.
We propose the following version of Bernstein-Walsh-Siciak theorem in Lp spaces.

Theorem 6.1 Let E ⊂ H be a L-regular non-empty compact set and let µ be
a finite measure such, that Let (E, µ) satisfy (BM) for an exponent p ≥ 1. and
f : E �→ H be a Borel function with ‖f‖µ,p < ∞. If fn ∈ Hn[q] is a sequence of
polynomials such that

lim sup
n→∞

||f − fn||1/nµ,p ≤ 1

R

then f is regular µ almost everywhere in the interior of the set ER := {q ∈ H :
ΦE(q) ≤ R}, i.e. there exists f̃ regular in the interior of ER and µ(ER ∩ {q ∈ H :
f̃(q) �= f(q)}) = 0.

Proof. The sequence ‖fn‖µ,p is bounded because ‖fn‖µ,p has the finite limit
‖f‖µ,p < ∞. Fix ε > 0. By (BM) we have

||fn+1 − fn||E ≤ A(1 + ε)n+1||fn+1 − fn||µ,p, for all n = 1, 2, 3, . . . ,

A = A(ε, µ) being a constant depending on ε and µ only. This implies that the
series

f0(q) +

∞∑
n=1

(
fn(q)− fn−1(q)

)

converges uniformly on compact subsets of the set {q : ΦE(q) <
R

1+ε} for arbitrary
ε > 0. This gives the assertion of the theorem. �
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7 Regularity and leading terms of polynomi-

als of best approximation

The relation between analyticity of a function f : Cn ⊃ E �→ C and leading
terms t̂n of polynomials of best approximation was studied in the case of one and
several complex variables, see Theorem 2.1 in [2] and references given there. We
will show that the regularity of a function f : H ⊃ E �→ H inside a level curve
{q ∈ H : ΦE(q) < R} of the polynomial extremal function ΦE is related to norms
of leading terms of the polynomials of best uniform polynomial approximation or
best approximation in Lp norm.

We denote by p̂n(q) := qnan the leading term of the polynomial pn(q) =
a0 + qa1 + · · ·+ qnan ∈ Hn[q].

Proposition 7.1 Let tn(q) =
∑n

k=0 q
kak be the n-th polynomial of best uniform

approximation of a function f : E �→ H bounded on a non-empty L-regular com-
pact set E ⊂ H, i.e.

‖f − tn‖E = inf{‖f − pn‖E : pn ∈ Hn[q]}.

If there exists R > 1 such that

lim sup
n→∞

‖t̂n‖1/nE ≤ 1

R
(11)

then function f is regular in the set ER := {q ∈ H : ΦE(q) < R}.

Proof. By the definition of polynomials of best uniform approximation we have

‖f − tn‖E ≤ ‖f − (tn+1 − t̂n+1)‖E ≤ ‖f − tn+1‖E + ‖t̂n+1‖E , (12)

By (11) for r ∈ (1, R) we obtain

‖t̂n+1‖E ≤ 1

rn+1
, for n ≥ N(r).

Repeating (12) we get

‖f − tn‖E ≤ ‖t̂n+1‖E + ‖f − tn+1‖E
≤ ‖t̂n+1‖E + ‖t̂n+2‖E + ‖f − tn+2‖E ≤ . . .

≤ 1

rn+1
+

1

rn+2
+ · · · = 1

r − 1

1

rn
.

Hence lim supn→∞ ‖f−tn‖1/nE ≤ 1
r for any r ∈ (1, R). By Theorem 5.1 we conclude

that f is regular in ER. �
A similar proposition to the previous one we may obtain in the case of the

polynomial approximation in the Lp norm if the pair (E, µ) satisfies condition
(BM).

9
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7 Regularity and leading terms of polynomi-

als of best approximation

The relation between analyticity of a function f : Cn ⊃ E �→ C and leading
terms t̂n of polynomials of best approximation was studied in the case of one and
several complex variables, see Theorem 2.1 in [2] and references given there. We
will show that the regularity of a function f : H ⊃ E �→ H inside a level curve
{q ∈ H : ΦE(q) < R} of the polynomial extremal function ΦE is related to norms
of leading terms of the polynomials of best uniform polynomial approximation or
best approximation in Lp norm.

We denote by p̂n(q) := qnan the leading term of the polynomial pn(q) =
a0 + qa1 + · · ·+ qnan ∈ Hn[q].

Proposition 7.1 Let tn(q) =
∑n

k=0 q
kak be the n-th polynomial of best uniform

approximation of a function f : E �→ H bounded on a non-empty L-regular com-
pact set E ⊂ H, i.e.

‖f − tn‖E = inf{‖f − pn‖E : pn ∈ Hn[q]}.

If there exists R > 1 such that

lim sup
n→∞

‖t̂n‖1/nE ≤ 1

R
(11)

then function f is regular in the set ER := {q ∈ H : ΦE(q) < R}.

Proof. By the definition of polynomials of best uniform approximation we have

‖f − tn‖E ≤ ‖f − (tn+1 − t̂n+1)‖E ≤ ‖f − tn+1‖E + ‖t̂n+1‖E , (12)

By (11) for r ∈ (1, R) we obtain

‖t̂n+1‖E ≤ 1

rn+1
, for n ≥ N(r).

Repeating (12) we get

‖f − tn‖E ≤ ‖t̂n+1‖E + ‖f − tn+1‖E
≤ ‖t̂n+1‖E + ‖t̂n+2‖E + ‖f − tn+2‖E ≤ . . .

≤ 1

rn+1
+

1

rn+2
+ · · · = 1

r − 1

1

rn
.

Hence lim supn→∞ ‖f−tn‖1/nE ≤ 1
r for any r ∈ (1, R). By Theorem 5.1 we conclude

that f is regular in ER. �
A similar proposition to the previous one we may obtain in the case of the

polynomial approximation in the Lp norm if the pair (E, µ) satisfies condition
(BM).

9

Proposition 7.2 Let E ⊂ H be a non-empty regular compact set and µ be a finite
Borel measure such that the pair (E, µ) satisfies (BM) for an exponent p ≥ 1. Let
τn(q) =

∑n
k=0 q

kak be the n-th polynomial of best approximation in Lp norm of
a Borel function f : E �→ H with

∫
E |f(q)|pdµ(q) < ∞, i.e.

‖f − τn‖µ,p = inf
{
‖f − pn‖µ,p : pn ∈ Hn[q]

}
.

If there exists R > 1 such that

lim sup
n→∞

‖τ̂n‖1/nµ,p ≤ 1

R
(13)

then function f is regular µ almost everywhere in the set ER.

Proof. Proceeding as in the proof of Proposition 7.1 we obtain

‖f − τn‖µ,p ≤ ‖f − (τn+1 − τ̂n+1)‖µ,p ≤ ‖f − τn+1‖µ,p + ‖τ̂n+1‖µ,p, (14)

by the defintion of polynomials of best approximation in the Lp norm. By (13) for
r ∈ (1, R) we obtain

‖τ̂n+1‖E,µ ≤ 1

rn+1
, for n ≥ N(r).

Repeating (14) we get

‖f − τn‖E,µ ≤ ‖τ̂n+1‖E,µ + ‖f − τn+1‖E,µ

≤ ‖τ̂n+1‖E,µ + ‖τ̂n+2‖E,µ + ‖f − τn+2‖E,µ ≤ . . .

≤ 1

rn+1
+

1

rn+2
+ · · · = 1

r − 1

1

rn
.

Hence lim supn→∞ ‖f−τn‖1/nE,µ ≤ 1
r for any r ∈ (1, R). By Theorem 6.1 we conclude

that f is regular µ almost everywhere in ER. �

8 Factors of polynomials approximating reg-

ular functions

We start with an observation that the points qnk, see (15), in the factorisation of
partial sums of power series of a regular function in the ball B(0, R) := {q ∈ H :
|q| < R} have to lay outside this ball.

Proposition 8.1 Let sn(q) =
∑n

k=0 q
kak be the n-th partial sum of the power

series
∑∞

k=0 q
kak and let qnk ∈ H, k = 1, 2, . . . , n be a sequence of quaternions in

the factorisation of sn

sn(q) = (q − qn1) ∗ (q − qn2) ∗ · · · ∗ (q − qnn)an. (15)

If the points lay outside the ball B(0, R) for R > 0 and for n ≥ n0 then sn converges
to a function f regular in B(0, R).
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Proof. Observe that

|a0| = |sn(0)| = |(0− qn1) ∗ (0− qn2) ∗ · · · ∗ (0− qnn) ∗ an|
= |qn1 qn2 . . . qnn an| = |qn1| |qn2| . . . |qnn| |an| ≥ Rn|an|

(16)

Hence lim supn→∞ |an|1/n ≤ 1
R . This implies the uniform converence of the power

series sn(q) =
∑n

k=0 q
kak to a function f regular in B(0, R), see [5], Theorem 1.6.

�
The classical Jentzsch’s theorem on the complex plane states that if sn(z) :=∑n

k=0 akz
k are partial sums of the series f(z) =

∑∞
k=0 akz

k with radius of conver-
gence 1, then each point on the circle of convergence |z| = 1 is a limit point of
zeros of the polynomials sn. Hence the natural question arises.

Question 8.2 Is every point of the set |q| = R an accumulation point of quater-
nions qnk, where sn(q) = (q − qn1) ∗ (q − qn2) ∗ · · · ∗ (q − qnn)an, if the function
f(q) =

∑∞
k=0 q

kak is regular in the set |q| < R and is not regular in the larger ball
|q| < R1, for R1 > R?

By [5], Theorem 2.11, the series

f(q) =
∞∑
k=0

(q − c)∗nan

converges on compact subsets of σ-ball Σ(c, R), where 1
R := lim supn→∞ |an|1/n,

and it does not converge at any point of H \ Σ(c, R). Hence the next question
arises.

Question 8.3 Is every point of the set {q ∈ H : σ(c, q) = R} an accumulation
point of quaternions qnk, where

sn(q) =

n∑
k=0

(q − c)∗kak = (q − qn1) ∗ (q − qn2) ∗ · · · ∗ (q − qnn)an?

Partial sums of the power series
∑∞

k=0 q
kak may be replaced by polynomials of

best uniform approximation or best approximation in Lp norm.

Proposition 8.4 Let tn(q) =
∑n

k=0 q
kank ∈ Hn[q] be the sequence of polynomials

of best uniform approximation of a function f : B(0, r) �→ H bounded on the closed
ball B(0, r) = {q ∈ H : |q| ≤ r}, for r > 0. If the quaternions qnk in the factors

tn(q) = (q − qn1) ∗ (q − qn2) ∗ · · · ∗ (q − qnn)ann. (17)

lay outside the ball B(0, R), for R > r, then function f is regular in the ball
B(0, R).

11
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= |qn1 qn2 . . . qnn an| = |qn1| |qn2| . . . |qnn| |an| ≥ Rn|an|

(16)

Hence lim supn→∞ |an|1/n ≤ 1
R . This implies the uniform converence of the power

series sn(q) =
∑n

k=0 q
kak to a function f regular in B(0, R), see [5], Theorem 1.6.

�
The classical Jentzsch’s theorem on the complex plane states that if sn(z) :=∑n

k=0 akz
k are partial sums of the series f(z) =

∑∞
k=0 akz

k with radius of conver-
gence 1, then each point on the circle of convergence |z| = 1 is a limit point of
zeros of the polynomials sn. Hence the natural question arises.

Question 8.2 Is every point of the set |q| = R an accumulation point of quater-
nions qnk, where sn(q) = (q − qn1) ∗ (q − qn2) ∗ · · · ∗ (q − qnn)an, if the function
f(q) =

∑∞
k=0 q

kak is regular in the set |q| < R and is not regular in the larger ball
|q| < R1, for R1 > R?

By [5], Theorem 2.11, the series

f(q) =
∞∑
k=0

(q − c)∗nan

converges on compact subsets of σ-ball Σ(c, R), where 1
R := lim supn→∞ |an|1/n,

and it does not converge at any point of H \ Σ(c, R). Hence the next question
arises.

Question 8.3 Is every point of the set {q ∈ H : σ(c, q) = R} an accumulation
point of quaternions qnk, where

sn(q) =

n∑
k=0

(q − c)∗kak = (q − qn1) ∗ (q − qn2) ∗ · · · ∗ (q − qnn)an?

Partial sums of the power series
∑∞

k=0 q
kak may be replaced by polynomials of

best uniform approximation or best approximation in Lp norm.

Proposition 8.4 Let tn(q) =
∑n

k=0 q
kank ∈ Hn[q] be the sequence of polynomials

of best uniform approximation of a function f : B(0, r) �→ H bounded on the closed
ball B(0, r) = {q ∈ H : |q| ≤ r}, for r > 0. If the quaternions qnk in the factors

tn(q) = (q − qn1) ∗ (q − qn2) ∗ · · · ∗ (q − qnn)ann. (17)

lay outside the ball B(0, R), for R > r, then function f is regular in the ball
B(0, R).
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Proof. Observe that ‖t̂n‖B(0,r)
= ‖qnann‖B(0,r)

= |ann|rn. Function f is

bounded, so the sequence |tn(0)| is bounded as well. Moreover

|tn(0)| = |(0− qn1) ∗ (0− qn2) ∗ · · · ∗ (0− qnn)ann| ≥ Rn|ann|.

Hence ‖t̂n‖1/n
B(0,r)

= |ann|1/nr ≤ r
R |tn(0)|

1/n and lim supn→∞ ‖t̂n‖1/n
B(0,r)

≤ r
R . By

Proposition 7.1 function f is regular in the set

{
q ∈ H : Φ

B(0,r)
(q) <

R

r

}
= B(0, R),

as Φ
B(0,r)

(q) = max{1, |q|r }, see Proposition 4.1. �

Proposition 8.5 Let E := B(0, r), r > 0, and let µ be a finite Borel measure on E
such that (E, µ) satisfies (BM) for an exponent p ≥ 1. Let τn(q) =

∑n
k=0 q

kank ∈
Hn[q] be the sequence of polynomials of best approximation in Lp norm of function
f : E �→ H,

∫
E |f(q)|pdµ(q) < ∞, i.e.

‖f − τn‖E,µ = inf{‖f − pn‖E,µ : pn ∈ Hn[q]}.

If the quaternions qnk in the factors

τn(q) = (q − qn1) ∗ (q − qn2) ∗ · · · ∗ (q − qnn)ann. (18)

lay outside the ball B(0, R), for R > r, then function f is regular µ almost every-
where in the ball B(0, R).

Proof. Proceeding as in the proof of Proposition 8.4 we have

‖τ̂n‖B(0,r)
= ‖qnann‖B(0,r)

= |ann|rn.

Fix ε > 0 and note that by (BM) we have

‖pn‖B(0,r)
≤ A(1 + ε)n‖pn‖µ,p, for any polynomial pn ∈ Hn[q].

Thus
|τn(0)| ≤ ‖τn‖B(0,r)

≤ A(1 + ε)n‖τn‖µ,p (19)

A = A(ε, p) being a constant. The sequence ‖τn‖µ,p is bounded because it has the
finite limit ‖f‖µ,p < ∞. Moreover

|τn(0)| = |(0− qn1) ∗ (0− qn2) ∗ · · · ∗ (0− qnn)ann| ≥ Rn|ann|. (20)

By (19) and (20) we have

‖τ̂n‖1/n
B(0,r)

= |ann|1/nr ≤ (1 + ε)
r

R

(
A‖τn‖µ,p

)1/n
.
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Thus
lim sup
n→∞

‖t̂n‖1/n
B(0,r)

≤ (1 + ε)
r

R
, for any ε > 0.

By Proposition 7.1 function f is regular µ almost everywhere in the set

{
q ∈ H : Φ

B(0,r)
(q) <

R

r

}
= B(0, R),

as Φ
B(0,r)

(q) = max{1, |q|r }, see Proposition 4.1. �

References

[1] T.Bloom, Orthogonal Polynomials in Cn, Indiana University Mathematics
Journal, Vol. 46, No. 2 (Summer, 1997), 427–452
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Figure 2: The sets Σ(ci, Ri) ∩ {x0 + ix1 + jx2 + kx3 ∈ H : x3 = 0} with
c1 = (−3,−1, 0, 0), c2 = (0, 0, 0, 0), c3 = (3, 1, 0, 0) and R1 = R2 = R3 =

13
10
.

Note that c2 = 0 belongs to every complex line LI , thus σ(c2, q) = |c2 − q|
and Σ(c2, R2) = B(c2, R2).

Figure 3: The sets Σ(ci, Ri) ∩ {x0 + ix1 + jx2 + kx3 ∈ H : x3 = 0} with
c1 = (−3,− 7

10
, 0, 0), c2 = (0,− 7

10
, 0, 0), c3 = (3,− 7

10
, 0, 0) and R1 = 1

2
,

R2 = 1, R3 =
13
10
.
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