Polynomial approximation of regular functions of a quaternionic variable

Jerzy Szczepański ${ }^{1}$
${ }^{1}$ Jagiellonian University, Faculty of Mathematics and Computer Science, Poland

Abstract

We consider Bernstein-Walsh-Siciak-type theorems on the polynomial approximation in the case of regular functions of one quaternionic variable and their applications to the uniform approximation and approximation in L^{p} norms with respect to measures satisfying the Bernstein-Markov condition.

1. Introduction

The analytic continuation of a function $f: \mathbb{C}^{n} \supset E \mapsto \mathbb{C}$ and the rate of convergence of polynomials approximating function f in the uniform norm on a compact set E was studied in the case of one and several complex variables by Bernstein, Walsh, Siciak and other autors (see [8] and references given there). In this paper we prove analogues of the Bernstein-Walsh-Siciak theorem in the case of regular function $f: \mathbb{H} \supset E \mapsto \mathbb{H}$ of one quaternionic variable, see Theorems 5.1 and 6.1. Next we consider also relationship between leading terms $\widehat{t}_{n}(q)=q^{n} a_{n}$ of polynomials $t_{n}(q)=a_{0}+q a_{1}+\cdots+q^{n} a_{n}$ approximating function $f: \mathbb{H} \supset E \mapsto \mathbb{H}$ and regularity of f in an open neighbourhood of the set E, see Propositions 7.1 and 7.2. We also propose certain sufficient conditions for regularity of f expressed by the distribution of points $q_{n k}$ appearing in the factorization of the polynomials of the best approximation

$$
t_{n}(q)=\left(q-q_{n 1}\right) *\left(q-q_{n 2}\right) * \cdots *\left(q-q_{n n}\right) a_{n n}
$$

see Propositions 8.1, 8.4 and 8.5.

2. Preliminaries

Let \mathbb{H} be the field of real quaternions with elements $q=x_{0}+i x_{1}+j x_{2}+k x_{3}$, where the numbers $x_{0}, x_{1}, x_{2}, x_{3}$ are real, and i, j, k are imaginary units, i.e. their square equals -1 and $i j=-j i=k, j k=-k j=i$ and $k i=-i k=j$. We donote by $\Re q:=x_{0}$ the scalar (or real) part and by $\Im q:=i x_{1}+j x_{2}+k x_{3}$ the vector (or imaginary) part of the quaternion q. Let

$$
\mathbb{S}:=\left\{q=x_{0}+i x_{1}+j x_{2}+k x_{3} \in \mathbb{H}: x_{0}=0, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

Original article

Keywords

- quaternionic regular functions
- polynomial approximation
- Bernstein-Walsh-Siciak theorem
- Bernstein-Markov condition
- polynomial extremal function
- Bernstein-Walsh inequality

Corresponding author

Jerzy Szczepański
e-mail: jerzy.szczepanski@uj.edu.pl Uniwersytet Jagielloński Wydział Matematyki i Informatyki ul. Prof. S. Łojasiewicza 6
30-348 Kraków, Poland
tel. +48126647577

Article info

Publisher

University of Applied Sciences in Tarnow ul. Mickiewicza 8, 33-100 Tarnow, Poland

User license

© by Author. This work is licensed under a Creative
Commons Attribution 4.0
International License CC-BY-SA.

Financing

This research did not received any grants from public, commercial or non-profit organizations.

Conflict of interest

None declared.
be the unit sphere of purely imaginary quaternions. The elements $I \in \mathbb{S}$ are called imaginary units as $I^{2}=-1$. In particular, $i=(0,1,0,0), j=(0,0,1,0)$, $k=(0,0,0,1) \in \mathbb{S}$.

One may prove that $\overline{q_{1} q_{2}}=\overline{q_{2}} \overline{q_{1}}$, where $\bar{q}:=x_{0}-i x_{1}-j x_{2}-k x_{3}=\Re q-\Im q$ is the conjugate of the element $q=x_{0}+i x_{1}+j x_{2}+k x_{3}=\Re q+\Im q$. Then $q \bar{q}=\bar{q} q=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$. Observe that $|q|:=(q \bar{q})^{1 / 2}$ is a norm of the quaternion q. We have also $q=|q|(\cos \varphi+\hat{q} \sin \varphi)$ for an angle $\varphi \in[0, \pi]$ where \hat{q} is the axis of q defined by $\hat{q}:=\frac{1}{|q| \sin \varphi}\left(i x_{1}+j x_{2}+k x_{3}\right)=\frac{\Im q}{|q| \sin \varphi}$ if $|\Im q|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \neq 0$, or $\hat{q}:=i 0+j 0+k 0$, otherwise.

We consider the set $\mathbb{H}_{d}[q]:=\left\{\sum_{n=0}^{d} q^{n} a_{n}, a_{n} \in \mathbb{H}\right\}$ of regular polynomials of one quaternionic variable q of degree less or equal d with coefficients on the right side of the monomials q^{n} and the set $\mathbb{H}[q]=\bigcup_{d=0}^{\infty} H_{d}[q]$ of all regular polynomials of one quaternionic variable $q \in \mathbb{H}$. Following [4] we define the regular product * of polynomials $f(q)=\sum_{k=0}^{m} q^{k} a_{k}$ and $g(q)=\sum_{l=0}^{n} q^{l} b_{l}$:

$$
\begin{equation*}
f * g(q):=\sum_{p=0}^{m n} q^{p} c_{p}, \text { where } c_{p}=\sum_{k+l=p} a_{k} b_{l} \tag{1}
\end{equation*}
$$

Observe that the regular product $p_{1} * p_{2}$ of elements $p_{1} \in \mathbb{H}_{k}[q], p_{2} \in \mathbb{H}_{l}[q]$ is an element of $\mathbb{H}_{k+l}[q]$ while the simple product $p_{1} p_{2}$ of the factors p_{1} and p_{2} need not be an element of the set $\mathbb{H}[q]$:

$$
\begin{array}{lll}
(q-j) *(q-k) & =q^{2}-q(j+k)+j k & \in \mathbb{H}[q] \\
(q-j)(q-k) & =q^{2}-j q-q k+j k & \notin \mathbb{H}[q]
\end{array}
$$

which is due to noncommutability of quaternions.
By the Eilenberg-Niven theorem (known also as the quaternionic version of the Fundamental Theorem of Algebra) one may factor each polynomial in a quaternionic variable. In particular, for each regular quaternionic polynomial

$$
f(q)=a_{1}+q a_{1}+q^{2} a_{2}+\cdots+q^{n} a_{n} \in \mathbb{H}_{n}[q]
$$

there are quaternions $q_{1}, q_{2}, \ldots, q_{n}$ such that

$$
\begin{equation*}
f(q)=\left(q-q_{1}\right) *\left(q-q_{2}\right) * \cdots *\left(q-q_{n}\right) a_{n} \tag{2}
\end{equation*}
$$

(see [5], Theorem 3.18, Corollary 3.19).
In the following discussion, we will call the elements of the set $\mathbb{H}[q]$ just polynomials, omitting the word regular.

Observe that the factorisation (2) need not be unique nor the numbers q_{2}, q_{3}, \ldots, q_{n} do not have to be zeroes of the factored polynomial. Let us recall two known examples (see eg. [4]).

Example 2.1 The polynomial $p(q)=(q-i) *(q-2 j)$ can also be factored as

$$
p(q)=\left(q-\frac{8 i+6 j}{5}\right) *\left(q-\frac{4 j-3 i}{5}\right) .
$$

Example 2.2 Let $p(q)=(q-j) *(q-k)=q^{2}-q(j+k)+j k$. We have

$$
\begin{aligned}
& p(j)=j^{2}-j(j+k)+j k=0 \\
& p(k)=k^{2}-k(j+k)+j k=2 j k \neq 0 .
\end{aligned}
$$

Even if the rest of the points $q_{2}, q_{3}, \ldots q_{n}$ in factorisation (2) are not the zeroes of the polynomial, they are related to them (see [7]). Namely, consider the equivalence class of the the quaternion $q_{0} \in \mathbb{H}$

$$
\left[q_{0}\right]:=\left\{q \in \mathbb{H}: \text { there exists } a \in \mathbb{H}: a^{-1} q a=q_{0}\right\} .
$$

One may prove the following remark (see [7], Proposition 4).
Remark 2.3 If $f(q)=\left(q-q_{1}\right) *\left(q-q_{2}\right) * \cdots *\left(q-q_{n}\right)$ then

$$
\operatorname{Zero}(f) \subset\left[q_{1}\right] \cup\left[q_{2}\right] \cup \cdots \cup\left[q_{n}\right],
$$

where $\operatorname{Zero}(f)=\{q \in \mathbb{H}: f(q)=0\}$.

3. Regular functions

An extensive survey of the theory of regular functions of one quaternionic variable is presented in [5] and we restrict ourselves to the necessary definitions and properties of regular functions. For $I \in \mathbb{S}$ we donote by L_{I} the complex plane passing through the origin and containing 1 and I, i.e. $L_{I}:=\mathbb{R}+I \mathbb{R}$. Following [5] we say that a domain $\Omega \subset \mathbb{H}$ that intersects the real axis is called a slice domain if, for all imaginary units $I \in \mathbb{S}$, the intersection $\Omega_{I}:=\Omega \cap L_{I}$ with the complex plane L_{I} is a domain of L_{I}. A real differentiable function $f: \Omega \mapsto \mathbb{H}$, defined on a slice domain $\Omega \subset \mathbb{H}$, is called regular if for every $I \in \mathbb{S}$ its restriction f_{I} to the complex line L_{I} is holomorphic on Ω_{I} (see [5], Definition 1.1), i.e.

$$
\bar{\partial}_{I} f(x+y I):=\frac{1}{2}\left(\frac{\partial}{\partial x}+I \frac{\partial}{\partial y}\right) f_{I}(x+y I) \equiv 0 \text { on } \Omega_{I} .
$$

It is known (see [3]) that the monomial $q^{n} a$ with $a \in \mathbb{H}$ is regular as well as the sum of regular functions is regular.

A set $T \subset \mathbb{H}$ is called symmetric if for all points $x+I y \in T$, with $x, y \in \mathbb{R}$ and $I \in \mathbb{S}$, the set T contains the whole sphere $x+y \mathbb{S}$, see [5], Definition 1.14. Symmetric slice domains play an important role in the theory of regular functions. We recall the following lemma (see [5], Lemma 1.22):

Lemma 3.1 Let $\Omega \subset \mathbb{H}$ be a symmetric slice domain and let $I \in \mathbb{S}$. If $f_{I}: \Omega_{I} \mapsto \mathbb{H}$ is holomorphic then there exists a unique regular function $g: \Omega \mapsto \mathbb{H}$ such that $g_{I}=f_{I}$ in Ω_{I}.

As a consequence one may obatain the extension theorem for regular functions, see [5], Theorem 1.24.

Theorem 3.2 Let f be a regular function on a slice domain Ω. There exists a unique regular function $\widetilde{f}: \widetilde{Q} \mapsto \mathbb{H}$ that extends f to the symmetric completion of Ω, i.e. to the set

$$
\widetilde{\Omega}:=\bigcup_{x+y I \in \Omega}(x+y \mathbb{S}) .
$$

Consider the set of power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} q^{n} a_{n}, a_{n} \in \mathbb{H} . \tag{3}
\end{equation*}
$$

endowed with the natural uniform convegence on compact sets. Observe that if $R:=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}\right)^{-1}$ then the series (3) converges uniformly on compact subsets of $B(0, R):=\{q \in \mathbb{H}:|q|<R\}$ to a regular function $f(q)=\sum_{n=0}^{\infty} q^{n} a_{n}$ in $B(0, R)$ and diverges if $|q|>R$, see [5], Theorem 1.6. We define the regular product * of the series $f(q)=\sum_{k} q^{k} a_{k}$ and $g(q)=\sum_{l} q^{l} a_{l}$ similarily as the regular product of polynomials (1):

$$
\begin{equation*}
f * g(q):=\sum_{m} q^{m} \sum_{k+l=m} a_{k} b_{l} \tag{4}
\end{equation*}
$$

The regular product $f * g$ is regular in $B(0, R)$ if f, g are regular in $B(0, R)$. One may also prove the proposition (see [5], Proposition 1.28).

Proposition 3.3 The set of regular functions on a symmetric slice domain $\Omega \subset \mathbb{H}$ is a noncommutative ring with respect to + and $*$. In particular polynomials $\mathbb{H}[q]$ are regular in \mathbb{H}.

One may define a distance $\sigma: \mathbb{H} \times \mathbb{H} \mapsto \mathbb{R}$ (see [5])

$$
\sigma(p, q)= \begin{cases}|p-q|, & \text { if } p, q \text { lie on the same complex line } L_{I} \tag{5}\\ \omega(p, q), & \text { otherwise }\end{cases}
$$

where

$$
\omega(p, q)=\sqrt{(\Re p-\Re q)^{2}+(|\Im p|+|\Im q|)^{2}} .
$$

The topology τ_{σ} in \mathbb{H} defined by the distance (5) is finer that the Euclidean topology τ_{d} induced by the distance $d(p, q)=|p-q|$, see [5], Section 2.13. Let $\Sigma(c, R):=\{q \in \mathbb{H}: \sigma(c, q)<R\}$ be the σ ball centered at $c \in \mathbb{H}$ of radii $R>0$ (see Figures 1, 2, 3).

We say (see [5], Definition 2.13) that $f: \mathbb{H} \supset \Omega \mapsto \mathbb{H}$ is σ-analytic at $c \in \Omega$ if there exists $R>0$ and a regular power series $\sum_{n=0}^{\infty}(q-c)^{* n} a_{n}$, where

$$
(q-c)^{* n} a_{n}:=\underbrace{(q-c) *(q-c) * \cdots *(q-c)}_{\text {regular product of } n \text { factors } q-c} a_{n},
$$

Figure 1: The sets $\Sigma\left(c_{i}, R_{i}\right) \cap\left\{x_{0}+i x_{1}+j x_{2}+k x_{3} \in \mathbb{H}: x_{3}=0\right\}$ with $c_{1}=$ $\left(-3,-\frac{3}{10}, 0,0\right), c_{2}=\left(0,-\frac{5}{10}, 0,0\right), c_{3}=\left(3,-\frac{7}{10}, 0,0\right)$ and $R_{1}=R_{2}=R_{3}=\frac{13}{10}$.
such that $f(q)=\sum_{n=0}^{\infty}(q-c)^{* n} a_{n}$ for $q \in \Sigma(c, R)$. We say that f is σ-analytic in Ω if it is σ-analytic at all $c \in \Omega$.

Regularity and σ-analyticity are strictly related, see [5], Corollary 2.14.
Proposition 3.4 A quaternionic function is regular in a domain if and only if it is σ-analytic in the same domain.

We recall the Splitting Lemma that is a crucial tool in the theory of regular functions, see [5], Lemma 1.

Lemma 3.5 Let f be a regular function defined on an open set Ω. Then for any $I \in \mathbb{S}$ and any $J \in \mathbb{S}$ with $J \perp I$, there exist two holomorphic functions $F, G: \Omega_{I} \cap L_{I} \mapsto L_{I}$ such that for every $z=x+y I$ we have $f_{I}(z)=F(z)+G(z) J$.

As a consequence we obtain
Corrolary 3.6 Let $\Omega \subset \mathbb{H}$ be a symmetric slice domain and let $p_{n} \in \mathbb{H}_{n}[q]$ be a sequence of polynomials converging uniformly on compact subsets of Ω to a function f bounded on compact subsets of Ω. Then f is regular on Ω.

Proof. Let $K \subset \Omega$ be a compact. Fix $I, J \in \mathbb{S}, I \perp J$. For $n=1,2,3, \ldots$ by the Splitting Lemma we get holomorphic functions $F_{n}: \Omega \cap L_{I} \mapsto L_{I}, G_{n}: \Omega \cap L_{I} \mapsto L_{I}$, such that $p_{n I}(z)=F_{n}(z)+G_{n}(z) J$, and F_{n}, G_{n} are converging on compact sets $K \cap L_{I}$ to functions $F_{I}: \Omega \cap L_{I} \mapsto L_{I}, G_{I}: \Omega \cap L_{I} \mapsto L_{I}$ holomorphic on
$\Omega \cap L_{I}$. Hence $f_{I}(z)=F_{I}(z)+G_{I}(a) J$ for $z \in L_{I}$ with holomorphic functions $F_{I}, G_{I}: \Omega \cap L_{I} \mapsto L_{I}$.

4. Polynomial extremal function

Following [8] we define polynomial extremal function of a non-empty compact set $E \subset \mathbb{H}$ (called the Leja-Siciak polynomial extremal function in the case where $\left.E \subset \mathbb{C}^{N}\right)$ by

$$
\begin{equation*}
\Phi_{E}(q):=\sup \left\{|p(q)|^{1 / \operatorname{deg} p}, p \in \mathbb{H}[q],\|p\|_{E} \leq 1\right\} \tag{6}
\end{equation*}
$$

where

$$
\|p\|_{E}=\sup \{|p(q)|, q \in E\}
$$

is the supremum norm of the polynomial $p(q)=a_{0}+q a_{1}+q^{2} a_{2}+\cdots+q^{n} a_{n} \in \mathbb{H}[q]$ on the set E.

Consider the polynomials $p_{n}(q)=\sum_{k=0}^{n}(q-c)^{* k} a_{k}$ satisfying $\left\|p_{n}\right\|_{E} \leq 1$ on the closure of the σ-ball $\Sigma(c, R)$, i.e. on the set $E:=\overline{\Sigma(c, R)}=\{q \in \mathbb{H}: \sigma(q, c) \leq R\}$. One may prove that

$$
\left|(q-c)^{* n}\right|=|(q-c) *(q-c) * \cdots *(q-c)| \leq \sigma(q, c)^{n}
$$

and $\lim _{n \rightarrow \infty}\left|(q-c)^{* n}\right|^{1 / n}=\sigma(q, c)$, see [5], Proposition 2.10. Hence we get the explicit formula for the polynomial extremal function of the set E.

Proposition 4.1 If $E=\{q \in \mathbb{H}: \sigma(q, c) \leq R\}$ then

$$
\Phi_{E}(q):=\max \left\{1, \frac{\sigma(q, c)}{R}\right\}
$$

In particular, for $c=0$ we have $\sigma(q, 0)=|q|$ and we get $\Phi_{E}(q):=\max \left\{1, \frac{|q|}{R}\right\}$.
Observe that function Φ_{E} need not be continuous. For a finite set $E:=$ $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subset \mathbb{H}$, we have

$$
\Phi_{E}(q)= \begin{cases}1, & q \in E \\ \infty, & q \notin E\end{cases}
$$

We shall say that non-empty compact set $E \subset \mathbb{H}$ is L-regular if the polynomial extremal function Φ_{E} is continuous on \mathbb{H}.

By the definition (6) we obtain the Bernstein-Walsh inequality (see [8] in the case where $E \subset \mathbb{C}^{n}$).

Proposition 4.2 Let $p_{n}(q)=a_{0}+q a_{1}+q^{2} a_{2}+\cdots+q^{n} a_{n} \in \mathbb{H}_{n}[q]$ and $E \subset \mathbb{H}$ be a non-empty compact set. Then for any quaternion $q \in \mathbb{H}$ we have

$$
\begin{equation*}
\left|p_{n}(q)\right| \leq \Phi_{E}^{n}(q)\left\|p_{n}\right\|_{E} \tag{7}
\end{equation*}
$$

In particular, we have

$$
\left|p_{n}(q)\right| \leq R^{n}\left\|p_{n}\right\|_{E} \text { for } q \in E_{R}
$$

where $E_{R}:=\left\{q \in \mathbb{H}: \Phi_{E}(q) \leq R\right\}$ for $R \geq 1$ is a sublevel set of the function Φ_{E}.

5. Bernstein-Walsh-Siciak theorem

Let us propose a version of the Bernstein-Walsh-Siciak theorem for function f : $\mathbb{H} \supset E \mapsto \mathbb{H}$ (see [8], Section 10 , Theorem 1 for the case where $f: \mathbb{C}^{n} \supset E \mapsto \mathbb{C}$).

Theorem 5.1 Let $E \subset \mathbb{H}$ be a non-empty compact L-regular set and let $f: E \mapsto$ \mathbb{H} be a bounded function. Let $p_{n} \in \mathbb{H}_{n}[q]$ be a sequence of polynomials. If there exists $R>1$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|f-p_{n}\right\|_{E}^{1 / n} \leq \frac{1}{R}, \text { for } R>1 \tag{8}
\end{equation*}
$$

then

1. the sequence p_{n} converges uniformly in $E_{r}:=\left\{q \in \mathbb{H}:\left|\Phi_{E}(q)\right| \leq r\right\}$ for $1<r<R$,
2. function f is regular in the interior of the set E_{R}, i.e. there exists regular function $\widetilde{f}: E_{r} \mapsto \mathbb{H}$ such that $\widetilde{f}=f$ on the set E.
Proof. We proceed as in the proof of Theorem 1 in [8], Section 10. Consider the series $p_{0}+\sum_{k=0}^{\infty}\left(p_{k+1}-p_{k}\right)$. By Proposition 4.2, for the polynomial $p_{n+1}-p_{n} \in$ $\mathbb{H}_{n+1}[q]$ we get the estimate

$$
\left|p_{n+1}(q)-p_{n}(q)\right| \leq\left\|p_{n+1}-p_{n}\right\|_{E} \Phi_{E}^{n+1}(q), \text { for } q \in \mathbb{H} .
$$

We have also

$$
\left\|p_{n+1}-p_{n}\right\|_{E} \leq\left\|p_{n+1}-f\right\|_{E}+\left\|p_{n}-f\right\|_{E}
$$

Chose $\varepsilon>0$ such that

$$
\left\|f-p_{n}\right\|_{E} \leq\left(\frac{1+\varepsilon}{R}\right)^{n}
$$

for $n>N, N=N(\varepsilon)$ being sufficiently large. We get

$$
\left|p_{n+1}(q)-p_{n}(q)\right| \leq 2\left(\frac{1+\varepsilon}{R}\right)^{n} \Phi_{E}^{n+1}(q), \text { for } q \in \mathbb{H}
$$

and

$$
\left|p_{n+1}(q)-p_{n}(q)\right| \leq 2 r\left(\frac{(1+\varepsilon) r}{R}\right)^{n}, \text { for } q \in E_{r} .
$$

Therefore the series $p_{0}+\sum_{k=0}^{\infty}\left(p_{k+1}-p_{k}\right)$ converges uniformly on E_{r}. Since $p_{0}+$ $\sum_{k=0}^{n}\left(p_{k+1}-p_{k}\right)=p_{n}$ the sequence of polynomials $p_{n} \in \mathbb{H}_{n}[q]$ converges uniformly to the function f on the set E_{r} for $1<r<R$. By Corrolary 3.6 function f is regular in the interior of the set E_{R}.

6. Polynomial approximation of regular functions in L^{p} spaces

Let μ be a finite Borel measure on a non-empty L-regular compact set $E \subset \mathbb{H}$. Proceeding as in [1] we say that the pair (E, μ) satisfies Bernstein-Markov condition (BM), if there exists $p, 0<p<\infty$ such that for any $\varepsilon>0$ there exists $A=A(\varepsilon, p)$ such that

$$
\begin{equation*}
\|f\|_{E} \leq A(1+\varepsilon)^{\operatorname{deg} f}\|f\|_{\mu, p} \tag{9}
\end{equation*}
$$

for all polynomials $f \in \mathbb{H}[q]$, where

$$
\begin{equation*}
\|f\|_{\mu, p}=\left(\int_{E}|f(q)|^{p} d \mu(q)\right)^{1 / p} . \tag{10}
\end{equation*}
$$

Using Hölder's inequality one may prove that if the pair (E, μ) satisfies $(B M)$ for one exponent $p \in(0, \infty)$, then it satisfies $(B M)$ for all exponents $p, 0<p<\infty$ (see [1], Remark 3.2). In particular, (10) defines a norm of $f: E \mapsto \mathbb{H}$ for $p \geq 1$.

Let $f: E \mapsto \mathbb{H}$ be a Borel function that has the bounded norm $\|f\|_{\mu, p}<\infty$. We propose the following version of Bernstein-Walsh-Siciak theorem in L^{p} spaces.

Theorem 6.1 Let $E \subset \mathbb{H}$ be a L-regular non-empty compact set and let μ be a finite measure such, that Let (E, μ) satisfy $(B M)$ for an exponent $p \geq 1$. and $f: E \mapsto \mathbb{H}$ be a Borel function with $\|f\|_{\mu, p}<\infty$. If $f_{n} \in \mathbb{H}_{n}[q]$ is a sequence of polynomials such that

$$
\limsup _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\mu, p}^{1 / n} \leq \frac{1}{R}
$$

then f is regular μ almost everywhere in the interior of the set $E_{R}:=\{q \in \mathbb{H}$: $\left.\Phi_{E}(q) \leq R\right\}$, i.e. there exists \tilde{f} regular in the interior of E_{R} and $\mu\left(E_{R} \cap\{q \in \mathbb{H}\right.$: $\tilde{f}(q) \neq f(q)\})=0$.

Proof. The sequence $\left\|f_{n}\right\|_{\mu, p}$ is bounded because $\left\|f_{n}\right\|_{\mu, p}$ has the finite limit $\|f\|_{\mu, p}<\infty$. Fix $\varepsilon>0$. By $(B M)$ we have

$$
\left\|f_{n+1}-f_{n}\right\|_{E} \leq A(1+\epsilon)^{n+1}\left\|f_{n+1}-f_{n}\right\|_{\mu, p}, \text { for all } n=1,2,3, \ldots,
$$

$A=A(\varepsilon, \mu)$ being a constant depending on ε and μ only. This implies that the series

$$
f_{0}(q)+\sum_{n=1}^{\infty}\left(f_{n}(q)-f_{n-1}(q)\right)
$$

converges uniformly on compact subsets of the set $\left\{q: \Phi_{E}(q)<\frac{R}{1+\varepsilon}\right\}$ for arbitrary $\varepsilon>0$. This gives the assertion of the theorem.

7. Regularity and leading terms of polynomials of best approximation

The relation between analyticity of a function $f: \mathbb{C}^{n} \supset E \mapsto \mathbb{C}$ and leading terms \widehat{t}_{n} of polynomials of best approximation was studied in the case of one and several complex variables, see Theorem 2.1 in [2] and references given there. We will show that the regularity of a function $f: \mathbb{H} \supset E \mapsto \mathbb{H}$ inside a level curve $\left\{q \in \mathbb{H}: \Phi_{E}(q)<R\right\}$ of the polynomial extremal function Φ_{E} is related to norms of leading terms of the polynomials of best uniform polynomial approximation or best approximation in L^{p} norm.

We denote by $\widehat{p}_{n}(q):=q^{n} a_{n}$ the leading term of the polynomial $p_{n}(q)=$ $a_{0}+q a_{1}+\cdots+q^{n} a_{n} \in \mathbb{H}_{n}[q]$.

Proposition 7.1 Let $t_{n}(q)=\sum_{k=0}^{n} q^{k} a_{k}$ be the n-th polynomial of best uniform approximation of a function $f: E \mapsto \mathbb{H}$ bounded on a non-empty L-regular compact set $E \subset \mathbb{H}$, i.e.

$$
\left\|f-t_{n}\right\|_{E}=\inf \left\{\left\|f-p_{n}\right\|_{E}: p_{n} \in \mathbb{H}_{n}[q]\right\}
$$

If there exists $R>1$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\widehat{t}_{n}\right\|_{E}^{1 / n} \leq \frac{1}{R} \tag{11}
\end{equation*}
$$

then function f is regular in the set $E_{R}:=\left\{q \in \mathbb{H}: \Phi_{E}(q)<R\right\}$.
Proof. By the definition of polynomials of best uniform approximation we have

$$
\begin{equation*}
\left\|f-t_{n}\right\|_{E} \leq\left\|f-\left(t_{n+1}-\widehat{t}_{n+1}\right)\right\|_{E} \leq\left\|f-t_{n+1}\right\|_{E}+\left\|\widehat{t}_{n+1}\right\|_{E} \tag{12}
\end{equation*}
$$

By (11) for $r \in(1, R)$ we obtain

$$
\left\|\widehat{t}_{n+1}\right\|_{E} \leq \frac{1}{r^{n+1}}, \text { for } n \geq N(r)
$$

Repeating (12) we get

$$
\begin{aligned}
\left\|f-t_{n}\right\|_{E} & \leq\left\|\widehat{t}_{n+1}\right\|_{E}+\left\|f-t_{n+1}\right\|_{E} \\
& \leq\left\|\widehat{t}_{n+1}\right\|_{E}+\left\|\widehat{t}_{n+2}\right\|_{E}+\left\|f-t_{n+2}\right\|_{E} \leq \cdots \\
& \leq \frac{1}{r^{n+1}}+\frac{1}{r^{n+2}}+\cdots=\frac{1}{r-1} \frac{1}{r^{n}}
\end{aligned}
$$

Hence $\lim \sup _{n \rightarrow \infty}\left\|f-t_{n}\right\|_{E}^{1 / n} \leq \frac{1}{r}$ for any $r \in(1, R)$. By Theorem 5.1 we conclude that f is regular in E_{R}.

A similar proposition to the previous one we may obtain in the case of the polynomial approximation in the L^{p} norm if the pair (E, μ) satisfies condition (BM).

Proposition 7.2 Let $E \subset \mathbb{H}$ be a non-empty regular compact set and μ be a finite Borel measure such that the pair (E, μ) satisfies $(B M)$ for an exponent $p \geq 1$. Let $\tau_{n}(q)=\sum_{k=0}^{n} q^{k} a_{k}$ be the n-th polynomial of best approximation in L^{p} norm of a Borel function $f: E \mapsto \mathbb{H}$ with $\int_{E}|f(q)|^{p} d \mu(q)<\infty$, i.e.

$$
\left\|f-\tau_{n}\right\|_{\mu, p}=\inf \left\{\left\|f-p_{n}\right\|_{\mu, p}: p_{n} \in \mathbb{H}_{n}[q]\right\} .
$$

If there exists $R>1$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\widehat{\tau}_{n}\right\|_{\mu, p}^{1 / n} \leq \frac{1}{R} \tag{13}
\end{equation*}
$$

then function f is regular μ almost everywhere in the set E_{R}.
Proof. Proceeding as in the proof of Proposition 7.1 we obtain

$$
\begin{equation*}
\left\|f-\tau_{n}\right\|_{\mu, p} \leq\left\|f-\left(\tau_{n+1}-\widehat{\tau}_{n+1}\right)\right\|_{\mu, p} \leq\left\|f-\tau_{n+1}\right\|_{\mu, p}+\left\|\widehat{\tau}_{n+1}\right\|_{\mu, p}, \tag{14}
\end{equation*}
$$

by the defintion of polynomials of best approximation in the L^{p} norm. By (13) for $r \in(1, R)$ we obtain

$$
\left\|\widehat{\tau}_{n+1}\right\|_{E, \mu} \leq \frac{1}{r^{n+1}}, \text { for } n \geq N(r)
$$

Repeating (14) we get

$$
\begin{aligned}
\left\|f-\tau_{n}\right\|_{E, \mu} & \leq\left\|\widehat{\tau}_{n+1}\right\|_{E, \mu}+\left\|f-\tau_{n+1}\right\|_{E, \mu} \\
& \leq\left\|\widehat{\tau}_{n+1}\right\|_{E, \mu}+\left\|\widehat{\tau}_{n+2}\right\|_{E, \mu}+\left\|f-\tau_{n+2}\right\|_{E, \mu} \leq \cdots \\
& \leq \frac{1}{r^{n+1}}+\frac{1}{r^{n+2}}+\cdots=\frac{1}{r-1} \frac{1}{r^{n}} .
\end{aligned}
$$

Hence $\lim \sup _{n \rightarrow \infty}\left\|f-\tau_{n}\right\|_{E, \mu}^{1 / n} \leq \frac{1}{r}$ for any $r \in(1, R)$. By Theorem 6.1 we conclude that f is regular μ almost everywhere in E_{R}.

8. Factors of polynomials approximating regular functions

We start with an observation that the points $q_{n k}$, see (15), in the factorisation of partial sums of power series of a regular function in the ball $B(0, R):=\{q \in \mathbb{H}$: $|q|<R\}$ have to lay outside this ball.

Proposition 8.1 Let $s_{n}(q)=\sum_{k=0}^{n} q^{k} a_{k}$ be the n-th partial sum of the power series $\sum_{k=0}^{\infty} q^{k} a_{k}$ and let $q_{n k} \in \mathbb{H}, k=1,2, \ldots, n$ be a sequence of quaternions in the factorisation of s_{n}

$$
\begin{equation*}
s_{n}(q)=\left(q-q_{n 1}\right) *\left(q-q_{n 2}\right) * \cdots *\left(q-q_{n n}\right) a_{n} . \tag{15}
\end{equation*}
$$

If the points lay outside the ball $B(0, R)$ for $R>0$ and for $n \geq n_{0}$ then s_{n} converges to a function f regular in $B(0, R)$.

Proof. Observe that

$$
\begin{align*}
\left|a_{0}\right|=\left|s_{n}(0)\right| & =\left|\left(0-q_{n 1}\right) *\left(0-q_{n 2}\right) * \cdots *\left(0-q_{n n}\right) * a_{n}\right| \tag{16}\\
& =\left|q_{n 1} q_{n 2} \ldots q_{n n} a_{n}\right|=\left|q_{n 1}\right|\left|q_{n 2}\right| \ldots\left|q_{n n}\right|\left|a_{n}\right| \geq R^{n}\left|a_{n}\right|
\end{align*}
$$

Hence $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \leq \frac{1}{R}$. This implies the uniform converence of the power series $s_{n}(q)=\sum_{k=0}^{n} q^{k} a_{k}$ to a function f regular in $B(0, R)$, see [5], Theorem 1.6.

The classical Jentzsch's theorem on the complex plane states that if $s_{n}(z):=$ $\sum_{k=0}^{n} a_{k} z^{k}$ are partial sums of the series $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ with radius of convergence 1 , then each point on the circle of convergence $|z|=1$ is a limit point of zeros of the polynomials s_{n}. Hence the natural question arises.

Question 8.2 Is every point of the set $|q|=R$ an accumulation point of quaternions $q_{n k}$, where $s_{n}(q)=\left(q-q_{n 1}\right) *\left(q-q_{n 2}\right) * \cdots *\left(q-q_{n n}\right) a_{n}$, if the function $f(q)=\sum_{k=0}^{\infty} q^{k} a_{k}$ is regular in the set $|q|<R$ and is not regular in the larger ball $|q|<R_{1}$, for $R_{1}>R$?

By [5], Theorem 2.11, the series

$$
f(q)=\sum_{k=0}^{\infty}(q-c)^{* n} a_{n}
$$

converges on compact subsets of σ-ball $\Sigma(c, R)$, where $\frac{1}{R}:=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$, and it does not converge at any point of $\mathbb{H} \backslash \overline{\Sigma(c, R)}$. Hence the next question arises.

Question 8.3 Is every point of the set $\{q \in \mathbb{H}: \sigma(c, q)=R\}$ an accumulation point of quaternions $q_{n k}$, where

$$
s_{n}(q)=\sum_{k=0}^{n}(q-c)^{* k} a_{k}=\left(q-q_{n 1}\right) *\left(q-q_{n 2}\right) * \cdots *\left(q-q_{n n}\right) a_{n} ?
$$

Partial sums of the power series $\sum_{k=0}^{\infty} q^{k} a_{k}$ may be replaced by polynomials of best uniform approximation or best approximation in L^{p} norm.

Proposition 8.4 Let $t_{n}(q)=\sum_{k=0}^{n} q^{k} a_{n k} \in \mathbb{H}_{n}[q]$ be the sequence of polynomials of best uniform approximation of a function $f: \overline{B(0, r)} \mapsto \mathbb{H}$ bounded on the closed ball $\overline{B(0, r)}=\{q \in \mathbb{H}:|q| \leq r\}$, for $r>0$. If the quaternions $q_{n k}$ in the factors

$$
\begin{equation*}
t_{n}(q)=\left(q-q_{n 1}\right) *\left(q-q_{n 2}\right) * \cdots *\left(q-q_{n n}\right) a_{n n} . \tag{17}
\end{equation*}
$$

lay outside the ball $B(0, R)$, for $R>r$, then function f is regular in the ball $B(0, R)$.

Proof. Observe that $\left\|\widehat{t_{n}}\right\|_{\overline{B(0, r)}}=\left\|q^{n} a_{n n}\right\|_{\overline{B(0, r)}}=\left|a_{n n}\right| r^{n}$. Function f is bounded, so the sequence $\left|t_{n}(0)\right|$ is bounded as well. Moreover

$$
\left|t_{n}(0)\right|=\left|\left(0-q_{n 1}\right) *\left(0-q_{n 2}\right) * \cdots *\left(0-q_{n n}\right) a_{n n}\right| \geq R^{n}\left|a_{n n}\right| .
$$

Hence $\left\|\widehat{t_{n}}\right\| \frac{1 / n}{B(0, r)}=\left|a_{n n}\right|^{1 / n} r \leq \frac{r}{R}\left|t_{n}(0)\right|^{1 / n}$ and $\lim \sup _{n \rightarrow \infty}\left\|\widehat{t_{n}}\right\| \frac{1 / n}{B(0, r)} \leq \frac{r}{R}$. By Proposition 7.1 function f is regular in the set

$$
\left\{q \in \mathbb{H}: \Phi_{\overline{B(0, r)}}(q)<\frac{R}{r}\right\}=B(0, R),
$$

as $\Phi_{\overline{B(0, r)}}(q)=\max \left\{1, \frac{|q|}{r}\right\}$, see Proposition 4.1.
Proposition 8.5 Let $E:=\overline{B(0, r)}, r>0$, and let μ be a finite Borel measure on E such that (E, μ) satisfies $(B M)$ for an exponent $p \geq 1$. Let $\tau_{n}(q)=\sum_{k=0}^{n} q^{k} a_{n k} \in$ $\mathbb{H}_{n}[q]$ be the sequence of polynomials of best approximation in L^{p} norm of function $f: E \mapsto \mathbb{H}, \int_{E}|f(q)|^{p} d \mu(q)<\infty$, i.e.

$$
\left\|f-\tau_{n}\right\|_{E, \mu}=\inf \left\{\left\|f-p_{n}\right\|_{E, \mu}: p_{n} \in \mathbb{H}_{n}[q]\right\} .
$$

If the quaternions $q_{n k}$ in the factors

$$
\begin{equation*}
\tau_{n}(q)=\left(q-q_{n 1}\right) *\left(q-q_{n 2}\right) * \cdots *\left(q-q_{n n}\right) a_{n n} . \tag{18}
\end{equation*}
$$

lay outside the ball $B(0, R)$, for $R>r$, then function f is regular μ almost everywhere in the ball $B(0, R)$.

Proof. Proceeding as in the proof of Proposition 8.4 we have

$$
\left\|\widehat{\tau_{n}}\right\|_{\overline{B(0, r)}}=\left\|q^{n} a_{n n}\right\|_{\overline{B(0, r)}}=\left|a_{n n}\right| r^{n} .
$$

Fix $\epsilon>0$ and note that by $(B M)$ we have

$$
\left\|p_{n}\right\|_{\overline{B(0, r)}} \leq A(1+\epsilon)^{n}\left\|p_{n}\right\|_{\mu, p}, \text { for any polynomial } p_{n} \in \mathbb{H}_{n}[q] .
$$

Thus

$$
\begin{equation*}
\left|\tau_{n}(0)\right| \leq\left\|\tau_{n}\right\|_{\overline{B(0, r)}} \leq A(1+\epsilon)^{n}\left\|\tau_{n}\right\|_{\mu, p} \tag{19}
\end{equation*}
$$

$A=A(\epsilon, p)$ being a constant. The sequence $\left\|\tau_{n}\right\|_{\mu, p}$ is bounded because it has the finite limit $\|f\|_{\mu, p}<\infty$. Moreover

$$
\begin{equation*}
\left|\tau_{n}(0)\right|=\left|\left(0-q_{n 1}\right) *\left(0-q_{n 2}\right) * \cdots *\left(0-q_{n n}\right) a_{n n}\right| \geq R^{n}\left|a_{n n}\right| . \tag{20}
\end{equation*}
$$

By (19) and (20) we have

$$
\left\|\widehat{\tau_{n}}\right\| \frac{1 / n}{B(0, r)}=\left|a_{n n}\right|^{1 / n} r \leq(1+\epsilon) \frac{r}{R}\left(A\left\|\tau_{n}\right\|_{\mu, p}\right)^{1 / n} .
$$

Thus

$$
\limsup _{n \rightarrow \infty}\left\|\widehat{t_{n}}\right\| \frac{1 / n}{B(0, r)} \leq(1+\epsilon) \frac{r}{R}, \text { for any } \epsilon>0
$$

By Proposition 7.1 function f is regular μ almost everywhere in the set

$$
\left\{q \in \mathbb{H}: \Phi_{\overline{B(0, r)}}(q)<\frac{R}{r}\right\}=B(0, R),
$$

as $\Phi_{\overline{B(0, r)}}(q)=\max \left\{1, \frac{|q|}{r}\right\}$, see Proposition 4.1.

References

[1] Bloom TV. Orthogonal Polynomials in $\mathbb{C}^{\text {n }}$. Indiana University Mathematics Journal. 1997;46(2):427-452. Available from: https://www.jstor.org/stable/24899623.
[2] Bloom T, Szczepański J. On the zeros of polynomials of best approximation. Journal of Approximation Theory. 1999;101(2):196-211. https://doi.org/10.1006/jath.1999.3381.
[3] Gentili G, Struppa DC. A new theory of regular functions of a quaternionic variable. Advances in Mathematics. 2007;216(1):279-301. https://doi.org/10.1016/j. aim.2007.05.010.
[4] Gentili G, Struppa DC. On the multiplicity of zeroes of polynomials with quaternionic coefficients, Milan Journal of Mathematics. 2008;76:15-25. https://doi.org/10.1007/ s00032-008-0093-0.
[5] Gentili G, Stoppato C, Struppa DC. Regular Functions of a Quaternionic Variable. Cham: Springer; 2013. https:// doi.org/10.1007/978-3-031-07531-5.
[6] Jentzsch R. Untersuchungen zur Theorie der Folgen analytischer Funktionen. Acta Mathematica. 1916;41:219251. https://doi.org/10.1007/BF02422945.
[7] Serôdio R, Lok-Shun Siu. Zeros of quaternion polynomials. Applied Mathematics Letters. 2001;14(2):237-239. https://doi.org/10.1016/S0893-9659(00)00142-7.
[8] Siciak J. On some extremal functions and their applications in the theory of analytic functions of several complex variables. Transactions of the American Mathematical Society. 1962;105(2):322-357. https://doi. org/10.2307/1993631.

Figure 2: The sets $\Sigma\left(c_{i}, R_{i}\right) \cap\left\{x_{0}+i x_{1}+j x_{2}+k x_{3} \in \mathbb{H}: x_{3}=0\right\}$ with $c_{1}=(-3,-1,0,0), c_{2}=(0,0,0,0), c_{3}=(3,1,0,0)$ and $R_{1}=R_{2}=R_{3}=\frac{13}{10}$. Note that $c_{2}=0$ belongs to every complex line L_{I}, thus $\sigma\left(c_{2}, q\right)=\left|c_{2}-q\right|$ and $\Sigma\left(c_{2}, R_{2}\right)=B\left(c_{2}, R_{2}\right)$.

Figure 3: The sets $\Sigma\left(c_{i}, R_{i}\right) \cap\left\{x_{0}+i x_{1}+j x_{2}+k x_{3} \in \mathbb{H}: x_{3}=0\right\}$ with $c_{1}=\left(-3,-\frac{7}{10}, 0,0\right), c_{2}=\left(0,-\frac{7}{10}, 0,0\right), c_{3}=\left(3,-\frac{7}{10}, 0,0\right)$ and $R_{1}=\frac{1}{2}$, $R_{2}=1, R_{3}=\frac{13}{10}$.

