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Abstract

We consider a Robin problem driven by the p-Laplacian and with a reaction which is 
gradient dependent (convection). Using truncations and perturbations, we show that 
the problem has at least one positive smooth solution.
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it is in general nonhomogeneous. However, the conditions on the reaction are
more restrictive and global. In addition, the approach there is different and
it uses the so called “freezing method”. Namely we freeze the gradient vari-
able. Then the resulting problem is variational and can be solved using the
minimax methods (critical point theory). We show that the “frozen problem”
has a smallest positive solution �uv depending on the frozen variable v. We
consider the map v → �uv and use fixed point theory to produce a solution
of the original problem. In contrast here we use truncation techniques and
the theory of nonlinear operators of monotone type. Nonlinear operator the-
ory was also used by Gasiński-Krech-Papageorgiou [4] but for a problem with
a reaction which is globally restricted. Finally we mention also the works of
Bai [1], Faraci-Motreanu-Puglisi [3], Gasiński-Papageorgiou [6], Papageorgiou-
Rădulescu-Repovš [11], Zeng-Papageorgiou [12] (singular problems with convec-
tion), all using the frozen variable method.

We mention that in the boundary condition ∂u
∂np

denotes the conormal deriva-

tive of u corresponding to the p-Laplacian. This condition is interpreted using
the nonlinear Green’s identity (see, for example, Gasiński-Papageorgiou [5, p.
221]). When u ∈ C1(Ω), then

∂u

∂np
= |Du|p−2(Du, n)RN = |Du|p−2 ∂u

∂n
,

with n being the outward unit normal on ∂Ω.

2 Mathematical Background - Hypotheses

The following spaces are important in the analysis of problem (1.1):

W 1,p(Ω), C1(Ω) and Lp(∂Ω).

By ∥ · ∥ we denote the norm of the Sobolev space W 1,p(Ω) defined by

∥u∥ =
(
∥u∥pp + ∥Du∥pp

) 1
p ∀u ∈ W 1,p(Ω).

The Banach space C1(Ω) is ordered with positive (order) cone

C+ = {u ∈ C1(Ω) : u(z) � 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

We will also use another cone in C1(Ω) defined by

D+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

����
∂Ω∩u−1(0)

< 0

}
.

Mathematical background hypotheses
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On ∂Ω we consider the (N−1)-dimensional Hausdorff (surface) measure σ. With
this measure on ∂Ω, we can define in the usual way the boundary Lebesgue space
Lτ (∂Ω) (1 � τ � ∞). We know that there exists a unique continuous linear map
γ0 : W

1,p(Ω) −→ Lp(∂Ω) known as the “trace map” such that γ0(u) = u|∂Ω for
all u ∈ W 1,p(Ω)∩C(Ω). Hence the trace map extends the notion of “boundary
values” to all Sobolev functions. This map is compact into Lr(∂Ω) for all

r ∈ [1, (p−1)N
N−p ), if p < N and into Lr(∂Ω) for all 1 � r < ∞ if N � p. We have

ker γ0 = W 1,p
0 (Ω) and im γ0 = W

1
p′ ,p(∂Ω)

( 1p +
1
p′ = 1). For the sake of notational simplicity, in the sequel we drop the use

of the trace map γ0. All restrictions of Sobolev functions on ∂Ω are understood
in the sense of traces.

Consider the following nonlinear eigenvalue problem:

{
−∆pu(z) = �λ|u(z)|p−2u(z) in Ω,
∂u
∂np

+ β(z)up−2u = 0, in ∂Ω.
(2.1)

We consider the following conditions on the boundary coefficient β:

H0 : β ∈ C0,α(∂Ω) for some α ∈ (0, 1) and β(z) � 0 for all z ∈ ∂Ω.

Remark 2.1. If β ≡ 0, then we have the Neumann problem.

We say that �λ is an eigenvalue of (2.1), if the problem admits a nontrivial
solution �u ∈ W 1,p(Ω) known as an eigenfunction corresponding to the eigenvalue
�λ. There is a smallest eigenvalue �λ1 with the following properties:
• �λ1 � 0 and �λ1 = 0 if β ≡ 0 (Neumann problem), �λ1 > 0 if β ̸≡ 0;

• �λ1 is isolated in the spectrum �σ(p) of (2.1), that is, there exists ε > 0 such

that (�λ1, �λ1 + ε) ∩ �σ(p) = ∅;
• �λ1 is simple (that is, if �u, �v are eigenfunctions corresponding to �λ1, then �u = µ�v
for some µ ∈ R \ {0});
• we have

�λ1 = inf
u∈W 1,p(Ω)\{0}

γ(u)

∥u∥pp
, (2.2)

where

γ(u) = ∥Du∥pp +
∫

∂Ω

β(z)|u|p dσ ∀u ∈ W 1,p(Ω).

In (2.2) the infimum is realized on the corresponding one dimensional eigen-
space, the elements of which have constant sign. The nonlinear regularity theory
of Lieberman [7] implies that every eigenfunction of (2.1) belongs in C1(Ω). By
�u1 we denote the Lp-normalized (that is, ∥�u1∥p = 1) positive eigenfunction

corresponding to �λ1. Then the nonlinear regularity theory and the nonlinear
maximum principle (see Gasiński-Papageorgiou [5, p. 738]), imply that �u1 ∈
intC+. For details we refer to Papageorgiou-Rădulescu [9].
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Let A : W 1,p(Ω) −→ W 1,p(Ω)∗ be the nonlinear operator defined by

⟨A(u), h⟩ =
∫

Ω

|Du|p−2(Du,Dh)RN dz ∀u, h ∈ W 1,p(Ω).

This operator has the following properties (see Gasiński-Papageorgiou [5]).

Proposition 2.2. The operator A is bounded (that is, maps bounded sets to
bounded sets), continuous, monotone (hence maximal monotone too) and of

type (S)+, that is, “un
w−→ u in W 1,p(Ω) and lim sup

n→+∞
⟨A(un), un − u⟩ � 0 imply

that un −→ u in W 1,p(Ω) as n → ∞”.

Let X be a reflexive Banach space, X∗ its topological dual and by ⟨·, ·⟩X
we denote the duality brackets for the pair (X,X∗). We say that a nonlinear

operator �V : X −→ X∗ is “pseudomonotone”, if it has the following property:
“If un

w−→ u in X, A(un)
w−→ y∗ in X∗ and

lim sup
n→+∞

⟨A(un), un − u⟩X � 0,

then y∗ = A(u) and ⟨A(un), un⟩X −→ ⟨A(u), u⟩X” (see Gasiński-Papageorgiou
[5, p. 330]).

Now, we introduce the hypotheses on the reaction term f(z, x, y):

H1 : f : Ω × R × RN −→ R is a Carathéodory function such that f(z, 0, 0) = 0
for almost all z ∈ Ω and

(i) there exists c+ > 0 such that

f(z, c+, 0) � 0 for a.a. z ∈ Ω;

(ii) there exist a function η ∈ L∞(Ω) and δ0 ∈ (0, c+) such that

η(z) � �λ1 for a.a. z ∈ Ω, η ̸≡ �λ1

and for every ε > 0, there exists cε > 0 such that

f(z, x, y) � (η(z)− ε)xp−1 − cεx
r−1

for almost all z ∈ Ω, all 0 � x � δ0, all y ∈ RN , with r ∈ (p, p∗) (recall
that p∗ = Np

N−p if p < N and p = +∞ if N � p);

(iii) for every ϱ > 0, there exists aϱ ∈ L∞(Ω) such that

|f(z, x, y)| � aϱ(z)

for almost all z ∈ Ω, all 0 � x � c+, all |y| � ϱ.
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Remark 2.3. Hypotheses H1(ii) is satisfied if the following is true

lim inf
x→0+

f(z, x, y)

xp−2
� η(z)

uniformly for almost all z ∈ Ω, all y ∈ RN . Note that all conditions in H1

concern the behaviour of f(z, ·, y) near zero.

The following function satisfies hypotheses H1:

f(z, x, y) = f0(x) + ξ(z)|y|ϑ,

with ξ ∈ L∞(Ω), ξ(z) � 0 for almost all z ∈ Ω, ϑ � 1 and f0 ∈ C(R+;R)
satisfies

lim inf
x→0+

f0(x)

xp−1
� η > �λ1

and there exists c+ > 0 such that f0(c+) � 0.

3 An Auxiliary Problem

In this section we examine the following auxiliary nonlinear Robin problem

{
−∆pu(z) = (η(z)− ε)u(z)p−1 − cεu(z)

r−1 in Ω,
∂u
∂np

+ β(z)up−1 = 0, in ∂Ω, u � 0, 1 < p < +∞.
(3.1)

Proposition 3.1. If hypotheses H0 hold, then for all ε > 0 small problem (3.1)
admits a unique solution �u0 ∈ intC+.

Proof. Let ψ : W 1,p(Ω) −→ R be the C1-functional defined by

ψ(u) =
1

p
γ(u) +

1

p
∥u−∥pp +

cε
r
∥u+∥rr −

1

p

∫

Ω

(η(z)− ε)(u+)p dz.

Since p < r, we see that ψ is coercive. Also using the Sobolev embedding
theorem and the compactness of the trace map, we show that ψ is sequentially
weakly lower semicontinuous. So, invoking the Weierstrass-Tonelli theorem, we
can find �u0 ∈ W 1,p(Ω) such that

ψ(�u0) = inf
u∈W 1,p(Ω)

ψ(u). (3.2)

Let t > 0 and recall that �u1 ∈ intC+ (see Section 2). We have

ψ(t�u1) =
tp

p

(∫

Ω

(�λ1 − η(z))�up
1 dz + ε

)
+

trcε
r

∥�u1∥rr (3.3)

(recall that γ(�u1) = �λ1∥�u1∥pp; see (2.2) and ∥�u1∥p = 1). Hypothesis H1(ii)
implies that

�c =
∫

Ω

(η(z)− �λ1)�up
1 dz > 0

An auxiliary problem

www.stijournal.pl
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(since �u1 ∈ intC+). Choosing ε ∈ (0,�c), from (3.3), we have

ψ(t�u1) � c1t
r − c2t

p,

for some c1, c2 > 0. Since r > p, for t ∈ (0, 1) small we have

ψ(t�u1) < 0,

so
ψ(�u0) < 0 = ψ(0)

(see (3.2)), thus �u0 ̸= 0. From (3.2) we have

ψ′(�u0) = 0,

so

⟨A(�u0), h⟩+
∫

∂Ω

β(z)|�u0|p−2�u0h dz −
∫

Ω

(�u−
0 )

p−1h dz

=

∫

Ω

(η(z)− ε)(�u+
0 )

p−1h dz − cε

∫

Ω

(�u+
0 )

r−1h dz ∀h ∈ W 1,p(Ω). (3.4)

In (3.4) above we choose h = −�u−
0 ∈ W 1,p(Ω). Then

γ(�u−
0 ) + ∥�u−

0 ∥pp = 0,

so �u0 � 0 and �u0 ̸= 0. Then from (3.4) and Green’s identity, we have

{
−∆p�u0(z) = (η(z)− ε)�u0(z)

p−1 − cε�u0(z)
r−1 in Ω,

∂ũ0

∂np
+ β(z)�up−1

0 = 0, in ∂Ω
(3.5)

(see Papageorgiou-Rădulescu [9]). From (3.5) and Papageorgiou-Rădulescu [8,
Proposition 2.10], we have

�u0 ∈ L∞(Ω).

Then applying Theorem 1 of Lieberman [7], we obtain

�u0 ∈ C+ \ {0}.

From (3.5), we have

∆p�u0(z) �
(
cε∥�u0∥r−p

∞
)�u0(z)

p−1 for a.a. z ∈ Ω.

Then the nonlinear strong maximum principle (see Gasiński-Papageorgiou [5,
p. 738]), implies that

�u0 ∈ intC+.

Next we show that this positive solution of (3.1) is unique. So, let �v0 ∈ W 1,p
0 (Ω)

be another positive solution of (3.1). Again we have �v0 ∈ intC+. Let t > 0 be
the biggest positive real such that

t�v0 � �u0. (3.6)

www.stijournal.pl
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Let ϱ = ∥�u0∥∞ and let �ξϱ > 0 be such that for almost all z ∈ Ω, the function

x �−→ (η(z)− ε)xp−1 − cεx
r−1 + �ξϱxp−1

is nondecreasing on [0, ϱ]. Suppose that t ∈ (0, 1). Using (3.6) and recalling the

choice of �ξϱ and that r > p, t ∈ (0, 1), we have

−∆p(t�v0) + �ξp(t�v0)p−1

= tp−1
(
−∆p�v0 + �ξϱ�vp−1

0

)
= tp−1

(
(η(z)− ε)�vp−1

0 − cε�vr−1
0 + �ξϱ�vp−1

0

)
< (η(z)− ε)(t�v0)p−1 − cε(t�v0)r−1 + �ξϱ(t�v0)p−1

� (η(z)− ε)�up−1
0 − cε�ur−1

0 + �ξϱ�up−1
0

= −∆p�u0 + �ξϱ�up−1
0 . (3.7)

Since �u0 ∈ intC+, we have that 0 < �m0 = min
Ω

�v0. Hence

cε(t
p−1 − tr−1)�vr−1

0 � cε(t
p−1 − tr−1)�mr−1

0 > 0.

Then from (3.7) and Proposition 2.10 of Papageorgiou-Rădulescu-Repovš [10]
(the strong comparison principle), we have

�u0 − t�v0 ∈ D+,

which contradicts the maximality of t > 0. This means that t � 1 and so

�v0 � �u0

(see (3.6)). If in the above argument, we interchange the roles of �u0 and �v0, we
obtain

�u0 � �v0
and so

�u0 = �v0.
This proves the uniqueness of the positive solution �u0 ∈ intC+.

We choose t ∈ (0, 1) small so that

t�u0(z) ∈ (0, δ0] ∀z ∈ Ω. (3.8)

Let �u = t�u0 ∈ intC+. Using also Proposition 3.1 and the fact that t ∈ (0, 1), we
have

−∆p�u(z) = tp−1(−∆p�u0(z))
= tp−1

(
(η(z)− ε)�u0(z)

p−1 − cε�u0(z)
r−1

)
� (η(z)− ε)(tu0(z))

p−1 − cε(tu0(z))
r−1

� f(z, �u(z), D�u(z)) (3.9)
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(see (3.8) and hypothesisH1(ii)). Also with �ξϱ > 0 as in the proof of Proposition
2, using (3.8), recalling that δ0 < c+ and using hypothesis H1(ii), we have

−∆p�u(z) + �ξϱ�u(z)p−1

� (η(z)− ε)�u(z)p−1 − cε�u(z)r−1 + �ξϱ�u(z)p−1

� (η(z)− ε)cp−1
+ − cεc

r−1
+ + �ξϱcp−1

+

� f(z, c+, 0) + �ξϱcp−1
+

� −∆pc+ + �ξϱcp−1
+ ,

so
�u(z) < c+ ∀z ∈ Ω (3.10)

(see Papageorgiou-Rădulescu-Repovš [10, Proposition 2.10]).

4 Positive Solutions

In this section using the theory of nonlinear operators of monotone type, we
show the existence of a positive smooth solution for problem (1.1).

Theorem 4.1. If hypotheses H0 and H1 hold, then problem (1.1) has a positive
solution �u ∈ intC+ and

�u(z) < c+ ∀z ∈ Ω.

Proof. Recall that �u � c+ (see (3.10)).
Next consider the continuous map τ : W 1,p(Ω) −→ W 1,p(Ω) defined by

τ(u)(z) =




�u(z) if u(z) < �u(z),
u(z) if �u(z) � u(z) � c+,
c+ if c+ < u(z).

(4.1)

Also let �f : Ω× R× RN −→ R be the following perturbation of f :

�f(z, x, y) = f(z, x, y) + |x|p−2x.

This is a Carathéodory function.
We consider the nonlinear operator V : W 1,p(Ω) −→ W 1,p(Ω)∗ defined by

⟨V (u), h⟩ = ⟨A(u), h⟩+
∫

Ω

|u|p−2uh dz +

∫

∂Ω

β(z)|u|p−2uh dσ

−
∫

Ω

f(z, τ(z), Dτ(z))h dz ∀h ∈ W 1,p(Ω).

Clearly V is bounded, continuous (see Proposition 2.2). Also assume that





un
w−→ u in W 1,p(Ω), V (un)

w−→ u∗ in W 1,p(Ω)∗,

lim sup
n→+∞

⟨V (un), un − u⟩ � 0.
(4.2)

Positive solutions
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From (4.2) we have

un −→ u in Lp(Ω) and in Lp(∂Ω).

Therefore we have
∫

Ω

|un|p−2un(un − u) dz −→ 0,

∫

∂Ω

β(z)|un|p−2un(un − u) dσ −→ 0 (4.3)

and ∫

Ω

f(z, τ(un), Dτ(un))(un − u) dz −→ 0 (4.4)

(see (4.1) and hypothesis H1(iii)). From (4.2), (4.3) and (4.4) it follows that

lim sup
n→+∞

⟨A(un), un − u⟩ � 0,

so
un −→ u in W 1,p(Ω)

(see Proposition 2.2). Then the continuity of the operator V implies that

V (un) −→ V (u) in W 1,p(Ω)∗,

so
u∗ = V (u)

(see (4.2)). Also, we have

⟨V (u)n, un⟩ −→ ⟨V (u), u⟩,

so V is pseudomonotone.
For every u ∈ W 1,p(Ω), we have

⟨V (u), u⟩ = γ(u) + ∥u∥pp −
∫

Ω

�f(z, τ(u), Dτ(u))u dz

� ∥u∥p − c2∥u∥,

for some c2 > 0 (see (4.1)), so V is coercive.
We know that a pseudomonotone, coercive operator is surjective (see Gasiń-

ski-Papageorgiou [5, p. 336]). So, we can find �u ∈ W 1,p(Ω) such that

V (�u) = 0,

so

⟨A(�u), h⟩+
∫

Ω

|�u|p−2�uh dz +
∫

∂Ω

β(z)|�u|p−2�uh dσ

=

∫

Ω

(
f(z, τ(�u), Dτ(�u)) + |τ(�u)|p−2τ(�u))h dz ∀h ∈ W 1,p(Ω). (4.5)

www.stijournal.pl
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In (4.5) first we choose h = (�u− �u)+ ∈ W 1,p(Ω). Then

⟨A(�u), (�u− �u)+⟩+
∫

Ω

|�u|p−2�u(�u− �u)+ dz +

∫

∂Ω

β(z)|�u|p−2�u(�u− �u)+ dσ

=

∫

Ω

(
f(z, �u,D�u) + �up−1

)
(�u− �u)+ dz

� ⟨A(�u), (�u− �u)+⟩+
∫

Ω

�up−1(�u− �u)+ dz +

∫

∂Ω

β(z)�up−1(�u− �u)+ dσ

(from (3.9) and Green’s identity), so

�u � �u.
Next in (4.5) we choose h = (�u− c+)

+ ∈ W 1,p(Ω). Then

⟨A(�u), (�u− c+)
+⟩+

∫

Ω

�up−1(�u− c+)
+ dz +

∫

∂Ω

β(z)�up−1(�u− c+)
+ dσ

=

∫

Ω

(
f(z, c+, 0) + cp−1

+

)
(�u− c+)

+ dz

� ⟨A(c+), (�u− c+)
+⟩+

∫

Ω

cp−1
+ (�u− c+)

+ dz +

∫

∂Ω

β(z)cp−1
+ (�u− c+)

+ dσ

(see hypotheses H1(i), H0), so
�u � c+.

So, we have proved that
�u ∈ [�u, c+], (4.6)

where [�u, c+] = {y ∈ W 1,p(Ω) : �u(z) � y(z) � c+ for a.a. z ∈ Ω}. From (4.5),
(4.6) and (4.1) we obtain that

⟨A(�u), h⟩+
∫

∂Ω

β(z)�up−1h dσ =

∫

Ω

f(z, �u,D�u)h dz ∀h ∈ W 1,p(Ω),

so �u is a positive solution of (1.1). As before the nonlinear regularity theory and
the nonlinear maximum principle imply that �u ∈ intC+ and as in Section 3 (see
(3.10)), using the strong comparison principle (see Papageorgiou-Rădulescu-
Repovš [10]), we have that �u(z) < c+ for all z ∈ Ω.
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