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Introduction

Electromyographic (EMG) signals are electro-physiological sig-
nals originating in muscles. They appear in response to muscle 
stimulation by electric potential coming from the nervous sys-
tem [1]. Responsible for the stimulus are motor neurons α locat-
ed on the anterior grey column (anterior cornu). The integra-
tion of the nerve centres results in action potentials, which are 
transduced to the muscles via peripheral nerves. This nerves end 
in synapses connecting them to the muscle cells, thus creating 
neuromuscular junctions. When action potential acts upon these 
axon terminals, they release a neurotransmitter acetylcholine () 
and the synaptic transmission begins. Next, the acetylcholine 
binds to the nicotinic receptors on the postsynaptic membrane, 
leading to a depolarization of the muscle cell. The increase in 
voltage inside the cell (disturbance of the resting potential) leads 
to the temporary change of the potential difference on both sides 
of the muscular membrane. Then, sodium channels open, and 
when the intracellular potential reaches approx.  +20 mV (fig. 1), 
the transport of sodium ions into the cell stops and potassium 
ions are moved outside the cell. The process spreads from the 
neuromuscular junction to the neighbouring areas. The entire 
mechanism is called a Na⁺/K⁺-ATPase, Na⁺/K⁺ pump or sodium–
potassium pump. 

Taking the contraction of a muscle into consideration, it is 
worth noting that after  the end plate potential and  the action 
potential have been generated, the potential inside the muscles 
spreads towards the cells alongside T-tubules. Additionally, Ca2+ 
is released from the vesicles of the sarcoplasmic reticulum and 
its diffusion to the thick and thin filaments takes place. Ca2+ 
binds to the Troponin C and the places where actin binds myosin 
are exposed. Subsequently, the transverse connections between 

actin and myosin are created and the thin filaments slide on the 
thick ones causing the shortening of the fibre. During the relax-
ation, the  Ca2+ ions are pumped back to the sarcoplasmic reticu-
lum, and then they unbind from the Troponin and the interaction 
between actin and myosin stops [2].

Table 1. Estimated concentration of ions in the intracellular and 
extracellular fluid inside the muscle fibres of mammals [mmol/l] 
[1, 2]

Ions Intracellular fluid  
(cytosol) Extracellular fluid

K+ 140–150 4–5

Na+ 10–14 140–150

Cl– 4–6 100–125

HCO3
– 8–10 27–28

Mg2+ 10–30 1–1,5

PO4
3– 60 2

Ca2+ 10-4 2,5

Figure 1. Representative changes of the membrane potential [3] according to 
the Hodgkin-Huxley model
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The electromyographic signal caused by the movement of ions 
can be registered on the skin as a result of temporal and spatial 
addition of action potentials of all active action units inside the 
area where the potentials can be registered by the electrodes [1]. 
EMG signals may also be registered with the help of the needle 
electrodes inserted into the muscle, but because it is a rather in-
vasive method, the sEMG (surface electromyography) has been 
chosen for the initial stage of the research. This method has a 
lot of limitations because only the bioelectrical activity of the 
muscles located near the surface of the skin can be measured [4]. 

Figure 2. Bionic hand [5]

Because a bionic hand that has been used is a relatively simple 
(although the plan is to increase its functionality to the stand-
ard offered by the medical solutions of SaeboGlove/Flex class or 
similar [6]) DFRobotBionic Robot Hand [5] (fig. 2), the sEMG 
sensors, placed on the skin in accordance with the SENIAM [7] 
(The European Recommendations for Surface Electromyogra-
phy) guidelines, have been used.

Aquisition of  the sEMG signals

Among the nineteen muscles of the forearm, ten of them are 
responsible for flexing and extending the metacarpophalangeal 
and the interphalangeal joints of the fingers II-V and the thumb. 
Such selection of functions of the muscle stems from the design 
of the simple bionic hand that has been used (fig. 2). EMG sig-
nals have been obtained with the use of eight electrodes tasked 
with registering sEMG signals coming from:

1. The palmaris longus muscle
2. The flexor digitorum superficialis
3. The extensor digitorum
4. The extensor digiti minimi 
5. The extensor indicis 
6. The extensor pollicis brevis
7. The extensor pollicis longus

Placement of the electrodes

The eight electrodes measuring the signals on the surface of the 
skin have been placed in the middle of the forearm, as shown in 
figure 3. The placement of the electrodes has been carefully cho-
sen—they have been placed above a chosen muscle, which may 
influence the precision of both the processing of EMG signals 
and machine learning algorithms of recognizing hand gestures 
[8]. 

Figure 3. Placement of eight sEMG sensors around the forearm

Gestures

Because of the bionic hand available, 22 gestures based on bend-
ing and straightening of the fingers have been considered, in-
cluding:

–  Bending five fingers individually from the rest position (in-
cluding open hand (fig. 4) and clenched fist (fig. 5), paper (as 
in the hand game – thumb inside)

Figure 4. An open hand gesture

Figure 5. A closed hand gesture
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–  straightening the fingers from  a closed hand position – in-
dividual fingers

– an OK gesture – the so-called violin (Figure 6)

Figure 6. An OK  gesture (pliers)

–  a grab gesture using mittens  – the so called lizard
–  a pencil-holding gesture
–  a call me gesture
–  a V gesture – the co called scissors  
–  a horns gesture – 2 types
–  a hand-counting gesture, including shooting and pointing 

gesture (Figure 7)

Figure 7. A hand-counting, pointing gesture.
a mug-holding gesture (Figure 8)

Figure 8. A mug-holding gesture

Tools and Methods

An evaluation board LPCXpresso with an LPC1347 [9] micro-
controller was used in the acquisition of electromyographic sig-
nals in the initial phase of the research. The system is equipped 
with, among others, a 32-bit ARM Cortex-M3 core (clocked 
at 72 MHz) and a 12-bit successive-approximation analog to 
digital converter (ADC) with an 8-channel multiplexer and a 
hardware sequencer that switches the measuring channels. With 
the correct oversampling of the measured signal, this solution 
allows interpreting obtained data, as if they were subjected to 
analog-to-digital processing in eight independent converters. 
Surface EMG sensors of the DFRobot Gravity OYMotion type 
are connected into specific ADC multiplexer ports. Every sensor 
consists of a triple measuring electrode module and a measuring 
amplifier module with a gain of 60 dB. The LPC1347 module 
has an integrated USB 2.0 interface controller. The processed 
data are saved on a circular buffer and then transmitted through 
the USB interface to the main application. It is a classical solu-
tion that allows for a constant acquisition and transmission of 
the signal. The aforementioned application was implemented in 
the C++ language with the use of a Qt framework [10] (Figure 
9). The software will allow for visualizing the measured EMG 
signals in real time and saving them in a multi-channel WAVE 
format.

To extract certain qualities of the EMG signal, the Fourier 
and Hilbert-Huang transforms (HHT) were utilized, using the 
Matlab environment. With the use of the same computing en-
vironment, that is Machine Learning Toolbox, there are plans 
of implementing and training a convolutional neural network 
(CNN).  22 gestures (finger-movements) have been differentiat-
ed and identified. The next step will be a conversion of the im-
plemented and trained neural network into a CMSIS-NN library 
[11] (Figure 10), which is dedicated to processors with the ARM 
Cortex-M core. For the purpose of controlling the bionic hand 
in real time with the use of the neural network [12], a build-in 
system based on a microcontroller with more computing power 
than that used for preliminary tests will be necessary to use. The 
real-time controlling system is planned to be implemented on a 
system with an ARM Cortex-M7 core (e.g. i.MX RT1050, 600 
MHz). In the next stage of research, it is planned to examine the 
possibilities of optimizing and implementing the neural network 
in a smaller, and cheaper, system with an ARM Cortex-M4 (e.g. 
LPC54628, 220 MHz) or an ARM Cortex-M33 (e.g. LPC55s69, 
2 cores 150 MHz) core.
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Measuring problems and artifacts

Due to the type of measurements, it is crucial to maintain their 
reliability and repeatability. For this reason, the precise position-
ing of the sEMG sensors is required. Any difficulties in position-
ing the sensors in an anatomically correct way were minimized 
due to their permanent arrangement in the “ring-bracelet” con-
figuration. It allowed placing them on the forearm in a repetitive 
way [8]. It is worth noting that during the sEMG measurement 
phase, it is possible for certain errors to occur due to the appear-
ance of harmonic frequencies of the electrical network (50 Hz), 
which can be easily filtered out.

sEMG signal analysis

Table 2. The sEMG module acquisition parameters

Settings Values

Number of sEMG channels (sensors) 8

Range of analysed frequencies 1 – 1024 Hz

Signal amplification 1000

Sampling frequency 2048 Hz

Signal acquisition time 5 s

Figure 9. A window-view of the developed application during acquisition of a 8-channel EMG signal

Figure 10. The conversion of a neural Network to a CMSIS-NN library [11]
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For the analysis of non-linear and non-stationary phenomena, 
such as biomedical signals, in addition to well-known frequen-
cy analysis methods (e.g. Fourier transforms), time-frequency 
signal analysis methods should also be utilized [13]. Due to the 
non-stationary nature of biomedical signals, we mostly use the 
Short-time Fourier transform (STFT), the wavelet transform, 
Wigner-Ville transformations, transformations belonging to the 
so-called Cohen class [13] or reclusive linear modeling (Kalman 
filters) [14]. Because in the Hilbert transform it is assumed that 
the signal has a form of a single but modulated sinusoidal wave-

form, it can also be useful for describing considered signals.
The time-frequency analysis of the Hilbert-Huang transfor-

mation method (HHT) [15] considered in this article uses an 
Empirical Mode Decomposition (EDM)  algorithm [15], which 
is adaptive enough to separate the Intrinsic Mode Function 
(IMF) components from each other both in time and frequen-
cy. Because this transform makes it possible to determine the 
distribution of energy of its frequencies in the time domain, it 
resembles a wavelet transform.

Figure 11. The amplitudes of signals of different hand gestures registered by eight sensors: a) an unclenched fist, b) a clenched fist, c) three fingers 
outstretched, d) an OK gesture, e) holding a mug, f) holding a pen

a)

c)

e)

b)

d)

f)
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Figure 11 shows the amplitude values of six gestures, as reg-
istered by eight sEMG sensors.

Each of the signals received by any of the channels x(t) is de-
composed accordingly to the algorithm introduced by Huang 
and realised as: 

  
where: hi(t) – a function, which might bea component of IMF,  

rK(t)– residual signal.

The process of finding an IMF component is approached as 
follows: the signal of the local mean average  (the mean aver-
age of the upper and lower envelopes of the signal) is subtracted 
k-times, until an IMF function is found, validated by two crite-
ria [14]:

1.  the number of extrema and the number of times the signal 
crosses zero must be equal or the difference between them 
cannot be greater than 1

2.  the mean values of the envelope interpolating the local 

Figure 12. Decomposed IMF components for the channel no. 7
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maxima and the envelope interpolating the local minima 
amount to 0.

The HHT algorithm is an extension of the EMD algorithm by 
the inclusion of the Hilbert transform. It is a transformation of 
time, realised as [16] [17]:

The transform allows for stating the instantaneous values of 
amplitudes as well as the frequencies of the decomposed com-
ponents of a signal. The use of such analysis will make isolating 
and pinpointing the dominating frequency in a signal possible.

The 12th figure shows an example of an EMD decomposition 
for the hand gesture of holding a mug (fig. 11e) taken from one 
of the channels (sensors) no. 7, including all the decomposed 
components of an IMF signal. From a five-second-long sample, 
data amounting for a second of making the proper gesture was 
extracted.

Out of the resulting IMF functions, the use of one of them 
[18] and four of them [19] will help with further analysis of the 
signal features.

Analysing the IMF components (fig. 14) leads to an observa-
tion that the first four functions have the greatest amplitude and 
carry the biggest amount of the signal energy.

In the analysis of the parameters of the signal, the object of the 
study will be the feature extraction out of four IMF in time, and 
it will be realised as a RMS (Root Mean Square) of the values 
of the samples [19]:

The autoregressive model AR (of the 4th order) will be used 
as well. It incorporates the linear combination of the last four 
samples of each IMF component, along with the noise, in which 
the value of a sample can be realised as:

where: xn – IMF signal samples, ai – AR coefficients, which 
need to be calculated, p – the AR model order, wn – a white noise 
sample, with mean average 0 and a variance .

In the instance of using eight channels with four IMF func-
tions and five employed features each, each gesture has 160 fea-
tures [19].

The use of feature extraction of the signal of each IMF com-
ponents including the following is to be discussed [18]: 

Figure 13. The time-frequency analysis of the first four IMF components
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–  the mean value
–  standard deviation
–  energy
–  entropy
–  the maximal value
–  the minimal value
–  scatter (the dispersion between the minimal and maximal 

values).
The described research included an additional preliminary 

study of the data from the whole measuring range (5sec) of the 
channels no. 1 and no. 7 (fig. 11e).

By analysing the amplitudes of the figures depicted on the 
charts (fig. 14 and fig. 15) of the first four IMF components, it 
can be observed that both the exact moment of the beginning of 
making a gesture (circa 1,3 sec after the start) and the participa-
tion level of each muscle measured by the electrodes no. 1 (fig. 
14) and no. 7 (fig. 15) varied greatly.

Figure 14. Four IMF components of the channel no. 1

Figure 15. Four IMF components of the channel no. 7
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Conclusions

The article describes the general idea behind the system of re-
al-time control of the bionic hand. The preliminary results of the 
original research confirmed that there is a possibility of separat-
ing various gestures on the basis of multi-channel acquisition of 
the EMG signal. Moreover, the article presents a methodology 
of extraction of features from the 8-channel EMG signal to be 
used in neural network learning. The collection of samples of 
signals related to different gestures from several dozen people 
has been planned. After ,convolutional neural network has been 
implemented, trained and tested in the Matlab environment, it 
will ultimately be converted to CMSIS-NN library dedicated to 
the processors with  the ARM Cortex-M core. In the last stage 
of the project, the system measuring  the EMG signals on the 
forearm will be used to control the bionic hand.
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