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ON RATIONAL FUNCTIONS RELATED TO ALGORITHMS
FOR A COMPUTATION OF ROOTS. I

MIROS�LAW BARAN

Abstract. We discuss a less known but surprising fact: a very old
algorithm for computing square root known as the Bhaskara-Brouncker
algorithm contains another and faster algorithms. A similar approach
was obtained earlier by A.K. Yeyios [8] in 1992. By the way, we shall
present a few useful facts as an essential completion of [8]. In particular,
we present a direct proof that k − th Yeyios iterative algorithm is of
order k. We also observe that Chebyshev polynomials Tn and Un are a
special case of a more general construction. The most valuable idea is
contained in applications of a simple rational function Φ(w, z) = z−w

z+w .

1. Introduction.

Bhaskara-Brouncker algorithm. Let xa[n] =
pn(a)
qn(a)

, where



pn+1(a) = pn(a) + qn(a)a;

qn+1(a) = pn(a) + qn(a);

p1(a) = q1(a) = 1.

.

Thus xa[n + 1] = xa[n]+a
xa[n]+1

. First nine elements of the sequel xa[n] are the

following

xa[1] = 1, xa[2] =
a+ 1

2
, xa[3] =

3a+ 1

a+ 3
, xa[4] =

a2 + 6a+ 1

4a+ 4
,

xa[5] =
5a2 + 10a+ 1

a2 + 10a+ 5
, xa[6] =

a3 + 15a2 + 15a+ 1

6a2 + 20a+ 6
, xa[7] =

7a3 + 35a2 + 21a+ 1

a3 + 21a2 + 35a+ 7
,

xa[8] =
a4 + 28a3 + 70a2 + 28a+ 1

8a3 + 56a2 + 56a+ 8
, xa[9] =

9a4 + 84a3 + 126a2 + 36a+ 1

a4 + 36a3 + 126a2 + 84a+ 9
.

There is known that lim
n→∞

xa[n] =
√
a and

��xa[n]−
√
a
�� =

����
pn(a)

qn(a)
−
√
a

���� ≤
1

qn(a)(pn(a) + qn(a)
√
a)

<
1

2qn(a)2
.

Heron’s algorithm.

ya[n+ 1] =
1

2

(
ya[n] +

a

ya[n]

)
, ya[0] = 1.
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ya[0] = 1, ya[1] =
a+ 1

2
, ya[2] =

a2 + 6a+ 1

4a+ 4
, ya[3] =

a4 + 28a3 + 70a2 + 28a+ 1

8a3 + 56a2 + 56a+ 8
.

If Fa[n] =
ya[n]−

√
a

ya[n]+
√
a
then, as it was observed by [6] Fa[n+ 1] = Fa[n]

2, which

implies

Fa[n] = Fa[0]
2n =

(
ya[0]−

√
a

ya[0] +
√
a

)2n

.

If we put εa[n] = ya[n]−
√
a then

Fa[n] =
εa[n]

εa[n] + 2
√
a
, εa[n] = 2

√
a

Fa[n]

1− Fa[n]

and therefore

|εa[n+ 1]| = εa[n]
2

|2εa[n] + 2
√
a|

with

lim
n→∞

|εa[n+ 1]|
εa[n]2

=
1

2
√
a
.

Halley’s algorithm.

za[n+ 1] =
za[n](3a+ za[n]

2)

3za[n]2 + a
, za[0] = 1.

za[1] =
3a+ 1

a+ 3
, za[2] =

9a4 + 84a3 + 126a2 + 36a+ 1

a4 + 36a3 + 126a2 + 84a+ 9
.

Following [6] (who considered the case of Heron’s algorithm) we also

define in this case Ga[n] =
za[n]−

√
a

za[n]+
√
a
and we easily check that Ga[n + 1] =

Ga[n]
3. Hence if εa[n] = za[n]−

√
a we get

Ga[n] =
εa[n]

εa[n] + 2
√
a
, εa[n] = 2

√
a

Ga[n]

1−Ga[n]

and thus

|εa[n+ 1]| = |εa[n]|3
1

4a

(1−Ga[n])
2

1 +Ga[n] +Ga[n]2

= |εa[n]|3
1

3εa[n]2 + 6
√
aεa[n] + 4a

= |εa[n]|3
1

3(εa[n] +
√
a)2 + a

with

lim
n→∞

|εa[n+ 1]|
|εa[n]|3

=
1

4a
.

Let us observe that

ya[1] = xa[2], ya[2] = xa[4], ya[3] = xa[8]

and

za[1] = x2[3], za[2] = xa[9].
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We can suppose that

ya[n] = xa[2
n], za[n] = xa[3

n], n = 0, 1, 2, . . .

We shall check in the next section that it is really true.

Let Φ(w, z) = z−w
z+w

, R2(w, z) =
1
2

(
z + w2

z

)
, R3(w, z) =

z(3w2+z2)
3z2+w2 . Then

Φ(w,R2(w, z)) = Φ(w, z)2, Φ(w,R3(w, z)) = Φ(w, z)3.

The above observations for Fa[n] and Ga[n] are equivalent to ya[n + 1] =

R2(
√
a, ya[n]), za[n+ 1] = R3(

√
a, za[n]) and

Φ(
√
a,R2(

√
a, ya[n])) = Φ(

√
a, ya[n])

2, Φ(
√
a,R3(

√
a, za[n])) = Φ(

√
a, za[n])

3.

Now we introduce a sequence of rational functions Rk(w, z) by

Φ(w,Rk(w, z)) = Φ(w, z)k, k = 1, 2, . . .

The basic properties of Rk, which play a crucial role, are contained in the

following.

Theorem 1.1. For all n,m ≥ 1 we have Rmn(w, z) = Rm(w,Rn(w, z)). If

we put for a fixed w Φw(z) = Φ(w, z) then Φ−1
w (z) = w 1+z

1−z
and

Rk(w, z) = Φ−1
w (Φw(z)

k) = w
(z + w)k + (z − w)k

(z + w)k − (z − w)k
, k = 1, 2, . . .

Let a sequence ζw[n] be defined by the recurrence formula ζw[n + 1] =

Rk(w, ζw[n]), ζw[0] = 1. Then, if we consider the error function E(w, z) =

z − w, we get

|E(w, ζw[n+ 1])|
|E(w, ζw[n])|k

=
|E(w, ζw[n+ 1]) + 2w|
|E(w, ζw[n]) + 2w|k

.

Hence, if lim
n→∞

E(w, ζw[n]) = 0, then

lim
n→∞

|E(w, ζw[n+ 1])|
|E(w, ζw[n])|k

=

(
1

2|w|

)k−1

, k ≥ 2.

This means (cf. [7] and [8] for the definition) that the iterative method ζw[n]

is of order k.

Proof. We have

Φ(w,Rm(w,Rn(w, z)) = Φ(w,Rn(w, z))
m = Φ(w, z)nm = Φ(w,Rmn(w, z),

which gives Rmn(w, z) = Rm(w,Rn(w, z)).

�

ya[0] = 1, ya[1] =
a+ 1

2
, ya[2] =

a2 + 6a+ 1

4a+ 4
, ya[3] =

a4 + 28a3 + 70a2 + 28a+ 1

8a3 + 56a2 + 56a+ 8
.

If Fa[n] =
ya[n]−

√
a

ya[n]+
√
a
then, as it was observed by [6] Fa[n+ 1] = Fa[n]

2, which

implies

Fa[n] = Fa[0]
2n =

(
ya[0]−

√
a

ya[0] +
√
a

)2n

.

If we put εa[n] = ya[n]−
√
a then

Fa[n] =
εa[n]

εa[n] + 2
√
a
, εa[n] = 2

√
a

Fa[n]

1− Fa[n]

and therefore

|εa[n+ 1]| = εa[n]
2

|2εa[n] + 2
√
a|

with

lim
n→∞

|εa[n+ 1]|
εa[n]2

=
1

2
√
a
.
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za[n+ 1] =
za[n](3a+ za[n]

2)
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za[1] =
3a+ 1
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, za[2] =
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.

Following [6] (who considered the case of Heron’s algorithm) we also

define in this case Ga[n] =
za[n]−

√
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za[n]+
√
a
and we easily check that Ga[n + 1] =

Ga[n]
3. Hence if εa[n] = za[n]−

√
a we get

Ga[n] =
εa[n]

εa[n] + 2
√
a
, εa[n] = 2

√
a

Ga[n]

1−Ga[n]

and thus

|εa[n+ 1]| = |εa[n]|3
1

4a

(1−Ga[n])
2

1 +Ga[n] +Ga[n]2

= |εa[n]|3
1

3εa[n]2 + 6
√
aεa[n] + 4a

= |εa[n]|3
1

3(εa[n] +
√
a)2 + a

with

lim
n→∞

|εa[n+ 1]|
|εa[n]|3

=
1

4a
.

Let us observe that

ya[1] = xa[2], ya[2] = xa[4], ya[3] = xa[8]

and
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2. Bhaskara-Brouncker algorithm gives Heron’s and Halley’s

algorithmic sequences.





p0(a) = q0(a) = 1, p1(a) = a+ 1, q1(a) = 2

pn+1(a) = pn(a) + aqn(a)

qn+1(a) = pn(a) + qn(a)



p0(a) = q0(a) = 1, p1(a) = a+ 1, q1(a) = 2

pn+2(a) = 2pn+1(a) + (a− 1)pn(a)

qn+2(a) = 2qn+1(a) + (a− 1)qn(a)

If Pn(a) =
pn+1(a)
pn(a)

, Qn(a) =
qn+1(a)
qn(a)

, then

Pn+1(a) = 1 + (a− 1)/Pn(a), Qn+1(a) = 1 + (a− 1)/Qn(a).

[
pn+1(a) pn(a)
pn(a) pn−1(a)

]
=

[
a+ 1 1
1 1

] [
2 1

a− 1 0

]n
, n = 0, 1, 2, 3, . . .

[
qn+1(a) qn(a)
qn(a) qn−1(a)

]
=

[
2 1
1 0

] [
2 1

a− 1 0

]n
, n = 0, 1, 2, 3, . . .

1

a

[
1 −1
−1 a+ 1

] [
pn+1(a) pn(a)
pn(a) pn−1(a)

]
=

[
0 1
1 −2

] [
qn+1(a) qn(a)
qn(a) qn−1(a)

]
,

in particular

qn(a) =
pn+1(a)− pn(a)

a
,
pn(a)

qn(a)
=

apn(a)

pn+1(a)− pn(a)
=

a
pn+1(a)
pn(a)

− 1
.

Since[
2 1

a− 1 0

]
=

[
− 1√

a+1
1√
a−1

1 1

] [
1−

√
a 0

0 1 +
√
a

] [ 1−a
2
√
a

1
2
(1 + 1√

a
)

−1+a
2
√
a

1
2
(1− 1√

a
)

]

and[
2 1

a− 1 0

]n
=

[
− 1√

a+1
1√
a−1

1 1

] [
(1−

√
a)n 0

0 (1 +
√
a)n

] [ 1−a
2
√
a

1
2
(1 + 1√

a
)

−1+a
2
√
a

1
2
(1− 1√

a
)

]
,

we get

pn(a) =
1

2

(
(1 +

√
a)n+1 + (1−

√
a)n+1

)
, n = 0, 1, . . .

qn(a) =
1

2
√
a

(
(1 +

√
a)n+1 − (1−

√
a)n+1

)
, n = 0, 1, . . .

Thus we have checked the following fact.

Proposition 2.1.

xa[n] =
√
a
(1 +

√
a)n + (1−

√
a)n

(1 +
√
a)n − (1−

√
a)n

, n = 1, 2, . . .
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, Qn(a) =
qn+1(a)
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[
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pn(a) pn−1(a)
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1 1
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2 1

a− 1 0

]n
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[
qn+1(a) qn(a)
qn(a) qn−1(a)

]
=

[
2 1
1 0

] [
2 1

a− 1 0

]n
, n = 0, 1, 2, 3, . . .

1

a

[
1 −1
−1 a+ 1

] [
pn+1(a) pn(a)
pn(a) pn−1(a)

]
=

[
0 1
1 −2

] [
qn+1(a) qn(a)
qn(a) qn−1(a)

]
,

in particular

qn(a) =
pn+1(a)− pn(a)

a
,
pn(a)

qn(a)
=

apn(a)

pn+1(a)− pn(a)
=

a
pn+1(a)
pn(a)

− 1
.

Since[
2 1

a− 1 0

]
=

[
− 1√

a+1
1√
a−1

1 1

] [
1−

√
a 0

0 1 +
√
a

] [ 1−a
2
√
a

1
2
(1 + 1√

a
)

−1+a
2
√
a

1
2
(1− 1√

a
)

]

and[
2 1

a− 1 0

]n
=

[
− 1√

a+1
1√
a−1

1 1

] [
(1−

√
a)n 0

0 (1 +
√
a)n

] [ 1−a
2
√
a

1
2
(1 + 1√

a
)

−1+a
2
√
a

1
2
(1− 1√

a
)

]
,

we get

pn(a) =
1

2

(
(1 +

√
a)n+1 + (1−

√
a)n+1

)
, n = 0, 1, . . .

qn(a) =
1

2
√
a

(
(1 +

√
a)n+1 − (1−

√
a)n+1

)
, n = 0, 1, . . .

Thus we have checked the following fact.

Proposition 2.1.

xa[n] =
√
a
(1 +

√
a)n + (1−

√
a)n

(1 +
√
a)n − (1−

√
a)n

, n = 1, 2, . . .

The above Proposition is also a Corollary to the following nice fact.

Theorem 2.2. If xa[n+ 1] = xa[n]+a
xa[n]+1

then

(2.1) Φ(
√
a, xa[n+ 1]) = g(

√
a)Φ(

√
a, xa[n]),

where g(u) = 1−u
1+u

, u ̸= 1.

Proof. Let h(w, z) = z+w2

z+1
. To check (2.1), we prove that Φ(w, h(w, z)) =

g(w)Φ(w, z). Really,

Φ(w, h(w, z)) =
z+w2

z+1
− w

z+w2

z+1
+ w

=
z(1− w)− w(1− w)

z(1 + w) + w(1 + w)
= g(w)Φ(w, z).

�

Corollary 2.3. For any positive integer n we have

(2.2) Φ(
√
a, xa[n]) =

1−
√
a

1 +
√
a
Φ(

√
a, xa[n− 1])

=

(
1−

√
a

1 +
√
a

)k

Φ(
√
a, xa[n− k]) =

(
1−

√
a

1 +
√
a

)n

.

(2.3) xa[n] = Φ−1√
a

((
1−

√
a

1 +
√
a

)n)
=

√
a
(1 +

√
a)n + (1−

√
a)n

(1 +
√
a)n − (1−

√
a)n

.

Proposition 2.4.

xa[2n] =
1

2
(xa[n] + a/xa[n]), n = 1, 2, . . .

In particular,

xa[2
n+1] =

1

2
(xa[2

n] + a/xa[2
n]), n = 0, 1, . . .

Proof.

1

2
(xa[n]+a/xa[n]) =

1

2

√
a

(
(1 +

√
a)n + (1−

√
a)n

(1 +
√
a)n − (1−

√
a)n

+
(1 +

√
a)n − (1−

√
a)n

(1 +
√
a)n + (1−

√
a)n

)

=
√
a
(1 +

√
a)2n + (1−

√
a)2n

(1 +
√
a)2n − (1−

√
a)2n

= xa[2n].

�

On can check, in a similar way, next proposition.

Proposition 2.5.

xa[3n] =
xa[n](3a+ xa[n]

2)

3xa[n]2 + a
, n = 1, 2, . . .

In particular,

xa[3
n+1] =

xa[3
n](3a+ xa[3

n]2)

3xa[3n]2 + a
, n = 0, 1, . . .
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Define

ha(t) =
a+ t

1 + z
, h2

a(t) = ha(ha(t)) =
a+ a+1

2
t

a+1
2

+ t
, h3

a(t) =
a+ 3a+1

a+3
t

3a+1
a+3

+ t
, . . .

We propose to the reader to check following facts.

Proposition 2.6.

hn
a(t) =

a+ xa[n]t

xa[n] + t
, n ≥ 1, hn

a(1) = xa[n+ 1].

Corollary 2.7.

lim
n→∞

hn
a(t) =

a+
√
at√

a+ t
=

√
a

and

Φ(
√
a, hn

a [t]) = Φ(
√
a, t)Φ(

√
a, xa[n]).

3. Generalizations of Yeyios polynomials.

Yeyios [8] introduced polynomials Pn and Qn in the following way.




Pn+1(x) = xPn(x) +Qn(x)a;

Qn+1(x) = Pn(x) + xQn(x);

P0(x) = x, Q0(x) = 1.

.




P0(x) = x, Q0(x) = 1, P1(x) = x2 + a, Q1(x) = 2x, P−1(x) = 1, Q−1(x) = 0;

Pn+2(x) = 2xPn+1(x) + (a− x2)Pn(x);

Qn+2(x) = 2xQn+1(x) + (a− x2)Qn(x).

[
Pn+1(x) Pn(x)
Pn(x) Pn−1(x)

]
=

[
x2 + a x

x 1

] [
2x 1

a− x2 0

]n
, n = 0, 1, 2, 3, . . .

[
Qn+1(x) Qn(x)
Qn(x) Qn−1(x)

]
=

[
2x 1
1 0

] [
2x 1

a− x2 0

]n
, n = 0, 1, 2, 3, . . .

1

a

[
1 −x
−x a+ x2

] [
Pn+1(x) Pn(x)
Pn(x) Pn−1(x)

]
=

[
0 1
1 −2x

] [
Qn+1(x) Qn(x)
Qn(x) Qn−1(x)

]
.

In particular

Qn(x) =
Pn+1(x)− xPn(x)

a
,
Pn(x)

Qn(x)
=

aPn(x)

Pn+1(x)− xPn(x)
=

a
Pn+1(x)
Pn(x)

− x
.

Since[
2x 1

a− x2 0

]
=

[
− 1√

a+x
1√
a−x

1 1

] [
x−

√
a 0

0 x+
√
a

] [ x2−a
2
√
a

1
2
(1 + x√

a
)

−x2+a
2
√
a

1
2
(1− x√

a
)

]
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Define

ha(t) =
a+ t

1 + z
, h2

a(t) = ha(ha(t)) =
a+ a+1

2
t

a+1
2

+ t
, h3

a(t) =
a+ 3a+1

a+3
t

3a+1
a+3

+ t
, . . .

We propose to the reader to check following facts.

Proposition 2.6.

hn
a(t) =

a+ xa[n]t

xa[n] + t
, n ≥ 1, hn

a(1) = xa[n+ 1].

Corollary 2.7.

lim
n→∞

hn
a(t) =

a+
√
at√

a+ t
=

√
a

and

Φ(
√
a, hn

a [t]) = Φ(
√
a, t)Φ(

√
a, xa[n]).

3. Generalizations of Yeyios polynomials.

Yeyios [8] introduced polynomials Pn and Qn in the following way.




Pn+1(x) = xPn(x) +Qn(x)a;

Qn+1(x) = Pn(x) + xQn(x);

P0(x) = x, Q0(x) = 1.

.




P0(x) = x, Q0(x) = 1, P1(x) = x2 + a, Q1(x) = 2x, P−1(x) = 1, Q−1(x) = 0;

Pn+2(x) = 2xPn+1(x) + (a− x2)Pn(x);

Qn+2(x) = 2xQn+1(x) + (a− x2)Qn(x).

[
Pn+1(x) Pn(x)
Pn(x) Pn−1(x)

]
=

[
x2 + a x

x 1

] [
2x 1

a− x2 0

]n
, n = 0, 1, 2, 3, . . .

[
Qn+1(x) Qn(x)
Qn(x) Qn−1(x)

]
=

[
2x 1
1 0

] [
2x 1

a− x2 0

]n
, n = 0, 1, 2, 3, . . .

1

a

[
1 −x
−x a+ x2

] [
Pn+1(x) Pn(x)
Pn(x) Pn−1(x)

]
=

[
0 1
1 −2x

] [
Qn+1(x) Qn(x)
Qn(x) Qn−1(x)

]
.

In particular

Qn(x) =
Pn+1(x)− xPn(x)

a
,
Pn(x)

Qn(x)
=

aPn(x)

Pn+1(x)− xPn(x)
=

a
Pn+1(x)
Pn(x)

− x
.

Since[
2x 1

a− x2 0

]
=

[
− 1√

a+x
1√
a−x

1 1

] [
x−

√
a 0

0 x+
√
a

] [ x2−a
2
√
a

1
2
(1 + x√

a
)

−x2+a
2
√
a

1
2
(1− x√

a
)

]

and[
2x 1

a− x2 0

]n
=

[
− 1√

a+x
1√
a−x

1 1

] [
(x−

√
a)n 0

0 (x+
√
a)n

] [ x2−a
2
√
a

1
2
(1 + x√

a
)

−x2+a
2
√
a

1
2
(1− x√

a
)

]
,

we get

Pn(a, z) =
1

2

(
(z +

√
a)n+1 + (z −

√
a)n+1

)
, n = 0, 1, . . .

Qn(a, z) =
1

2
√
a

(
(z +

√
a)n+1 − (z −

√
a)n+1

)
, n = 0, 1, . . .

Sn(a, z) =
Pn−1(a, z)

Qn−1(a, z)
=

√
a
(z +

√
a)n + (z −

√
a)n

(z +
√
a)n − (z −

√
a)n

.

Proposition 3.1.

Sn(a, z) = zxn[a/z
2].

Theorem 3.2. (A.K. Yeyios [8]) For all n,m ≥ 1

Snm(, az) = Sn(a, Sm(a, z)).

P̂n(w, z) =
1

2
((z + w)n + (z − w)n) , Q̂n(z, w) =

1

2w

(
(z + w)n+1 − (z − w)n+1

)
,

Ŝn(w, z) =
P̂n(w, z)

Q̂n−1(w, z)
= Rn(w, z).

We left to the reader to check the following properties.

Theorem 3.3. For arbitrary n,m ≥ 1

• Q̂n(w, z) =
1

w(n+2)
∂P̂n+2(w,z)

∂w

• Ŝnm(w, z) = Ŝn(w, Ŝm(w, z)).

• P̂n(
√
a, z) = Pn−1(a, z), Q̂n(

√
a, z) = Qn(a, z), Ŝn(

√
a, z) = Sn(a, z).

• P̂n(
√
z2 − 1, z) = Pn−1(z

2 − 1, z) = Tn(z),

Q̂n(
√
z2 − 1, z) = Qn(z

2 − 1, z) = Un(z).

Here Tn and Un denote classical Chebyshev polynomials of the first

and the second kind, respectively.

Remark 3.4. Let polynomials Pn, n ≥ 0, satisfy recurrence Pn+2(x) =

2xPn+1(x)−Pn(x), n ≥ 0 and take Qn(x) = Pn+1(x)/Pn(x) which will give

a relation Qn+1(x) = 2x− 1/Qn(x).

Now calculate Φ(w,Qn+1(x)− x):

Φ(w,Qn+1(x)− x) =
(x− w)Qn(x)− 1

(x+ w)Qn(x)− 1
=

x− w

x+ w

Qn(x)− 1/(2x− w)

Qn(x)− 1/(2x+ w)
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= Φ(w, x)
Qn(x)− x+ x− 1/(2x− w)

Qn(x)− x+ x− 1/(2x+ w)
.

If we choose w so that x− 1/(2x−w) = −w, x− 1/(2x+w) = w, we shall

get

Φ(w,Qn+1(x)− x) = Φ(w, x)Φ(w,Qn(x)− x).

A proper choice is w =
√
x2 − 1 and then

Φ(w,Qn+1(x)− x) = Φ(w, x)kΦ(w,Qn−k+1(x)− x), k = 1, . . . , n+ 1.

Hence

Φ(w,Qn(x)− x) = Φ(w, x)nΦ(w,Q0(x)− x),

Qn(x)−x = Φ−1
w (Φ(w, x)nΦ(w,Q0(x)− x)) = w

1 + Φ(w, x)nΦ(w,Q0(x)− x)

1− Φ(w, x)nΦ(w,Q0(x)− x)
,

Qn(x) = x+ w
1 + Φ(w, x)nΦ(w,Q0(x)− x)

1− Φ(w, x)nΦ(w,Q0(x)− x)

and we can obtain (in an alternative way) formulas for Pn(x). Consider, as

an example, P0(x) = 1, P1(x) = x, Q0(x) = x. Then Φ(w,Q0(x)−x) = −1,

whence

Qn(x) = x+ w
1− Φ(w, x)n

1 + Φ(w, x)n
=

x(1 + Φ(w, z)n) + w(1− Φ(w, z)n)

1 + Φ(w, z)n

=
x+ w + (x− w)Φ(w, x)n

1 + Φ(w, x)n
= (x+ w)

1 + Φ(w, x)n+1

1 + Φ(w, x)n
.

Since Pn(x) = Qn−1(x) ·Qn−2(x) · · ·Q0(x), we get

Pn(x) = (x+ w)n
1 + Φ(w, x)n

1 + Φ(w, x)0
=

1

2
((x+ w)n + (x− w)n)

which is known as a formula for Chebyshev polynomials Pn(x) = Tn(x).
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