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1. INTRODUCTION.

_ pn(a)

= where

Bhaskara-Brouncker algorithm. Let x,[n]

Pn+1 (a) = pﬂ(a> + Qn(a)a;
An+1 (CL) - pn(a) + %z(a);
pi(a) = qi(a) =

Thus z,[n + 1] = 2222 Pirst nine elements of the sequel 2,[n] are the

Tqn]+1°
following
a+1 3a+1 a’? +6a+1
al :]-7 (l2: ) a3: ) a = T i
wall] = 1, 2] = 0 ) = SRl = S
5a% 4+ 10a + 1 a® + 15a% 4+ 15a + 1 7a® 4+ 35a% 4+ 21a + 1
To[5] = —5—————1, T.[6] = 5 ; Ta[T] = —5 5 :
a’+10a + 5 6a” + 20a + 6 a3+ 21a? + 35a + 7

a* + 28a® + 70a? + 28a + 1 9] 9a* + 84a® + 126a® + 36a + 1
z,19 = .
8a? + 56a% + 56a + 8 at + 36a3 + 126a% + 84a + 9
There is known that lim z,[n] = \/a and
n—oo

z4[8] =

1 1
0n(@) (Pn(a) + 1u(@)Va)  2qn(a)?

. pn(a) —Ja
oul] - v = |24 — v <

Heron’s algorithm.
1= (wlal + ) o] =1
Yag | =7 | Yo y Ya = 1.
2 ya[n]
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a+1 a’+ 6a + 1 a* + 28a® + 70a® + 28a + 1
a0 = Ly, |l = s Yal2] = ————, Yu|3] =
Yal0) = L yall] = =5 0[] Jar1 Yl 8a° + 5642 + 56a + 8

If F,[n] = ZZ%;% then, as it was observed by [6] F,[n + 1] = F,[n]?, which

implies

Fuln] = Fafo]2" = (%—19 |

If we put g,4[n] = ya[n] — v/a then

Sa[TL] Fa[n]
Fyn| = —————F——, &[n| =2Va——F"
= v el va— Fun]
and therefore [ ]2
gan
a 1j| =
et = e+ 2va
with
. ea[n + 1] 1
lim = .
n—oo  g4[n)? 2y/a
Halley’s algorithm.
24[n](3a + z4[n]?)
Jn 1] = . 2a[0] = 1.
zaln + 1] 3z.[n]2 +a zal0)
3a+1 9a* + 84a® + 126a> + 36a + 1
21] = ——, z.[2] = )
a+3 a* + 36a3 + 126a2 + 84a + 9

Following [6] (who considered the case of Heron’s algorithm) we also

define in this case G,[n] = Z%—;g and we easily check that G,[n + 1] =

G.[n]?. Hence if €,[n] = z,[n| — /a we get

B €aq[n] ol — 94/2 Ga[n]
Galn] = gq[n] +2v/a’ faln] = 2\/_1 — Ga[n]
and thus . (1= Gy fn])?
lea[n +1]| = |5a[n”3ﬂl + Ga[n] :_ Go|n]?
_ 3 1 = 3 !
=l s pE ovas i+ 4a S var v a
with
o )1
i [

Let us observe that

ya[l] = xa[2]> ya[Q] = xa[4]> ya[3] = xa[g]

and
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We can suppose that
Ya[n] = 2a[2"], 2z4[n] = x4[3"], n=0,1,2,...

We shall check in the next section that it is really true.
Let ®(w, z) = Ry(w, z) = <z + w;) , Ry(w, z) = 2(Bultz?) oy

z+w’ 322+w?
O(w, Ry(w, 2)) = ®(w, 2)?, ®(w, R3(w, 2)) = ®(w, 2)°.
The above observations for F,[n] and G,[n] are equivalent to y,[n + 1] =
Ra(Va,ya[n]), za[n+ 1] = Rs(v/a, za[n]) and
®(Va, Ry(Va, ya[n])) = (Va, ya[n])?, (v, Rs(Va, za[n])) = @(Va, z[n])*.

Now we introduce a sequence of rational functions Ry (w, z) by
d(w, Ri(w, 2)) = ®(w, 2)*, k=1,2,...

The basic properties of Ry, which play a crucial role, are contained in the
following.

Theorem 1.1. For all n,m > 1 we have R,,,(w

w,z) = Ry (w, Ry (w, 2)). If
we put for a fized w @, (2) = ®(w, 2) then 1 (z) =

1+z and

z ’U)IC Z—wk
Ri(w, 2) = & (D (2)F) = wgziw;k i Ez _w;k, k=12, .

Let a sequence (,[n| be defined by the recurrence formula (,[n + 1] =
Ri(w, Cw[n]), Cuwl0] = 1. Then, if we consider the error function E(w,z) =
z —w, we get

[E(w, Cu[n + 1)) _ [E(w, Guln +1]) + 2u|

| E(w, Culn])|* |E(w, Guln]) + 2wl[*
Hence, if nhl& E(w, (y[n]) =0, then
B, Guln +1])| ( 1 )’H
1 === k .
e (B, Gl \2fw]) 77

This means (cf. [7] and [8] for the definition) that the iterative method (y,[n]
s of order k.

Proof. We have
O(w, Ry (w, Ry (w, 2)) = (w, Ry (w, 2))" = &(w, 2)"" = O(w, Ry, (w, 2),

which gives Ry, (w, 2) = Ry (w, R, (w, 2)).
U
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2. BHASKARA-BROUNCKER ALGORITHM GIVES HERON’S AND HALLEY’S
ALGORITHMIC SEQUENCES.

po(a) = qo(a) =1, pi(a) =a+1, q(a) =2
pn—f—l(a) = (a> + CLQn( )
Qn—l-l(a) - (a> + Qn( )
po(a) = qola) = 1, pi(a) =a+1, qia) =2
pn+2<a = 2ppi1(a) + (a — 1)pa(a)
| @n+2(a) = 2¢nia(a) + (@ — 1)gn(a)
If P,(a) = 288 Q,(a) = 229 then

Fupaa) =14 (a=1)/Fy(a), Qniaa) =1+ (a—1)/Qu(a).

Pn+1lQ a+1 1 9 11" -
|:pn pnl :| |: :||:(Z—1 O ’n—0,1,2,3,...
)
a

REREO0 BRI R

1 [ 1 -1 } [pn+1(a) pula) 1 _ [O 1] [an(G) tn(a) 1 |

-1 a+1 pn(a) pn71<a> 1 =2 %L(a) anl(a>

in particular

_pn+1(a)—pn(a) pn(a) . apn(a> - a
WO =TT @) o) pafe) Bty
Since
2 1] [~7252< 1h-va o se (l+=%)
[a—l 0]:[ Ve 1_{ 0 1+¢a] [‘jﬁ %(1—%)}
and
I N e e (1—/a)" 0 e 3(l+=)
T el )
we get
pala) = & (14 VA" 4 (1= Vay™) n=0,1,...
gn(a) = 2\1[(( VA - (1 Vartl), n=0,1,...

Thus we have checked the following fact.

Proposition 2.1.
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The above Proposition is also a Corollary to the following nice fact.

Theorem 2.2. [fx,[n+ 1] = % then

(2.1) O(va, za[n +1]) = 9(Va)®(Va, z4[n]),

where g(u) = ;—z, u# 1.

Proof. Let h(w,z) = Z;jr“f. To check (2.1), we prove that ®(w, h(w, 2)) =
g(w)®(w, z). Really,

_HE v -w) -wl-w)
O (w, h(w, z)) = % o 0tw) telrw = g(w)P(w, z).

Corollary 2.3. For any positive integer n we have

(2.2) (va, zaln]) = igcbwa, el — 1)

& ﬁ)kcbwa,xa[n—k]) - (%)
1

- (34
(23)  aufn] = @) ((11%)) _ ﬁ(1+x/5>”+(1—ﬁ)”_

a

Proposition 2.4.

In particular,
1
T4[2"] = 5(%[2”] +a/z,[2"]), n=0,1,...

Proof.
lx nl+a/xqn _ 1 a (1+var+(=va" (14 !

o/t = 3V (v (L v (L var

_ V@ (= VAP

(V= (1= v

On can check, in a similar way, next proposition.

Proposition 2.5.
24[n])(3a + x4[n)?)

Tal3n] = 3x4[n]? +a

=1,2

5 — 3 PRI

In particular,
74[3"(3a + z4[3"]?)

3n+1 —
] 32,[3")%2 +a

Tq| ,n=0,1,...
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Define
att a+ 2ttt a+ 3ot
ha(t) = ) hZ(t) - ha(ha(t)) = Ta+1 2 ’ hi(t) = 3al—a+
14z o’ st
We propose to the reader to check following facts.
Proposition 2.6.
a+ xq[nlt
hi(t) = ——————, n>1, hl (1) =z, 1].
() = S > 1 ) = afn+

Corollary 2.7.
a+ +/at
Vva+t

D(va, hlt)) = B(V/a, ) ®(v/a, a4[n]).

3. GENERALIZATIONS OF YEYIOS POLYNOMIALS.

lim Al (t) =

n—oo

—Va

and

Yeyios [8] introduced polynomials P, and @), in the following way.

Poii(x) = 2P, () + Qn(x)a;

Qni1(z) = Po(z) + 2Qn(2);
Py(x) =z, Qo(z) =1.
Py(z) = Q (x) =1, Pi(x) =2?+a, Qi(x) =2z, P1(x) =1, Q_1(x) =0;
Pyuya(2) = 20P 1 (2) + (a — 2°) Py (2);
Qna(z) = xQn+1($) + (a — 2%)Qu ().
) 2 Fr e o
s Gt I | MR IR SR
o e [ B | b el
In particular
Qn(x) = Pyi(z) a— x.Pn(x)7 S’;g; = Pn+1(a$§)7:(xzpn(x) = pn:(liz) .
Since
= - JFe A8 b
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and
2w 1" [~Zmas |[e-var o 5 30+ %)
{a—a? 0] _{ flf 1][ 0 (:C+\/5)”} [‘é’cﬁ“ %(1—\%) ’
we get
Pu(a,2) = 5 (= + Va)" ™ + (= = V@) ™), n=0,1,
Qula,2) = 5= ((z+ V)™ — (= vay"™), n=0,1,

Proposition 3.1.
Sp(a,z) = zx,[a/2?).

Theorem 3.2. (A.K. Yeyios [8]) For alln,m > 1
Sem(,az) = Sp(a, Sm(a, 2)).

Pu(w,2) = ¢ ()" + (2 = w)), Qulzw) = 5 (4 w)"™ — (= = w)"™),
A pn(w,z)
Sp(w,z) = ——— =R, (w, z).
(w, 2) O (w0 2) (w, 2)

We left to the reader to check the following properties.

Theorem 3.3. For arbitrary n,m > 1

A

* Qn(w,z) = w(nlJrQ) 8Pn+aiu(w’Z)

° Snm(w, z) = S’n(w, Sm(“% z)).

° Pn( a,z) = P, 1(a,2), Qn(va,2) = Qu(a, 2), S*n(\/a, z) = Su(a, 2).

e P (V22 —1,2) =P, 1(z2—1,2) = T,,(2),
Qn(V22—=1,2) = Qu(z2 —1,2) = Up(2).
Here'T}, and U,, denote classical Chebyshev polynomials of the first
and the second kind, respectively.

Remark 3.4. Let polynomials P,, n > 0, satisfy recurrence P, o(z) =

2¢P,1(x) — P,(z), n > 0 and take Q,(x) = P,+1(x)/P,(x) which will give

a relation Q,41(x) =2z — 1/Q,(x).
Now calculate ®(w, Qpy1(x) — 2):

@ w)Qu@ =1 r—wQul@) = /20— w)
P, Qnia(w) = 7) = (+w0)Qn(@) -1  z+wQn(z)—1/(2x +w)
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Qn(z) —z+x—1/2x —w)

Qn(z) —z+2—1/2x +w)

If we choose w so that z —1/(22 —w) = —w, x —1/(2x +w) = w, we shall
get

= d(w, z)

O(w, Qnii1(x) — ) = P(w, 2)P(w, Qn(z) — ).
A proper choice is w = /22 — 1 and then
D(w, Qnyi(z) — 2) = ®(w, 2) (w0, Qppir(z) —2), k=1,...,n+ 1.
Hence
O(w, Qn(z) —x) = (w, 2)"P(w, Qo(x) — z),

)
Qule) - = 8 (B )"0, Qf) — 0)) = wh eV B le)
1+ 0 )

)

H

(w, 2)"®(w, Qo() — )
®(w, 2)"®(w, Qo(z) — x)
and we can obtain (in an alternatlve way) formulas for P,(z). Consider, as
an example, Py(z) =1, Pi(x) = z, Qo(z) = x. Then ®(w, Qo(z) —z) = —1,

Qn(z) :x—i-w

whence
- P(w,z)"  x(1+P(w,2)") +w(l - P(w,2)")
Qn(x)—m+w1+q)( ) 1+ ®(w, )"
Crztw (v —w)d(w,z)" 1+ ®(w,x)" !
B 14+ &(w,x)" = (z4w) 14+ &(w,x)”

Since P, (z) = Qn-1(x) - Qn—2(z) - - Qo(x), we get
P = (o + w)“—i e (@ u) + = w))

which is known as a formula for Chebyshev polynomials P,(z) = T),(x).
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