On identities for derivative operators

Mirosław Baran ${ }^{1}$, Paweł Ozorka²

${ }^{1}$ Faculty of Mathematics, Physics and Technical Science, Pedagogical University, Podchorażych 2, 30-084 Kraków, Poland
${ }^{2}$ Department of Mathematics, Faculty of Mathematical and Natural Sciences, University of Applied Sciences in Tarnow, Mickiewicza 8, 33-100 Tarnów, Poland

Article history:

Received 20 December 2019
Received in revised form 27 December 2019
Accepted 27 December 2019
Available online 31 December 2019

Abstract

Let X be a commutative algebra with unity e and let D be a derivative on X that means the Leibniz rule is satised: $D(f g)=D(f) g+f D(g)$. If $D^{(k)}$ is k-th iteration of D then we prove that the following identity holds for any positive integer k

$$
\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} f^{j} D^{(m)}\left(g f^{k-j}\right)=\Phi_{k, m}(g, f)=\left\{\begin{array}{l}
0,0 \leq m<k \\
g D(f)^{k}, k=m
\end{array}\right.
$$

As an application we prove a sharp version of Bernstein's inequality for trigonometric polynomials.

Key words: Derivative operators, polynomial inequalities

1. An identity

Let X be a commutative algebra with unity e and let D be a derivative on X that means the Leibniz rule is satisfied: $D(f \cdot g)=D(f) \cdot g+f \cdot D(g)$. If $D^{(k)}$ is k-th iteration of D (with $D^{(0)}(f)=f$) then we define for $f, g \in X$

$$
\Phi_{k, m}(g, f):=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} f^{j} D^{(m)}\left(g f^{k-j}\right) .
$$

It is easy to check the following properties of $\Phi_{k, m}$.

Proposition 1.1.

- $\Phi_{0, m}(g, f)=D^{(m)}(g)$ for $m \geq 0$
- Key observation:

$$
\Phi_{k, 0}(g, f)=0, k \geq 1
$$

- Basic recurrence:

$$
\Phi_{k, m}(g, f)=D(f) \Phi_{k-1, m-1}(g, f)+D\left(\Phi_{k, m-1}(g, f)\right) .
$$

Proof. Only the recurrence is not clear. To see it, let us calculate $D\left(\Phi_{k, m-1}(g, f)\right)$

$$
\begin{gathered}
D\left(\Phi_{k, m-1}(g, f)\right)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} D\left(f^{j} D^{(m-1)}\left(g f^{k-j}\right)\right) \\
=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\left(j f^{j-1} D(f) D^{(m-1)}\left(g f^{k-j}\right)+f^{j} D^{(m)}\left(g f^{k-j}\right)\right) \\
=\Phi_{k, m}(g, f)+D(f) \frac{1}{(k-1)!} \sum_{j=1}^{k}(-1)^{j}\binom{k}{j} \frac{j}{k} f^{j-1} D^{(m-1)}\left(g f^{k-j}\right) \\
=\Phi_{k, m}(g, f)-D(f) \Phi_{k-1, m-1}(g, f),
\end{gathered}
$$

[^0]which is equivalent to the recurrence formula.
Theorem 1.2. Let $D: X \longrightarrow X$ be a derivation $(D(g \cdot f)=g \cdot D(f)+$ $D(g) \cdot f$) on a commutative algebra X, then for any positive integer k we have
\[

\Phi_{k, m}(g, f)=\left\{$$
\begin{array}{l}
0,0 \leq m<k \\
g \cdot D(f)^{k}, \quad k=m
\end{array}
$$\right.
\]

Proof. (Induction with respect to k).

1. $k=1 m=0$

$$
(\mathcal{L})=e \cdot g \cdot f-f \cdot g=0=(\mathcal{R})
$$

$$
m=1
$$

$$
(\mathcal{L})=D(g \cdot f)-f \cdot D(g)=g \cdot D(f)=(\mathcal{R})
$$

Remark 1.3. Those particular cases show, that Leibniz condition is necessary to hold the theorem $(k=1, m=1)$ and commutative assumption is equivalent to the case $k=1, m=0$.
2. Thm. $(k-1) \Rightarrow \operatorname{Thm} .(k)$ for $k \geq 2$.

To do this, we shall prove by induction with respect to m, the formula for $0 \leq m \leq k$.

$$
\begin{aligned}
& m=0 \\
& \qquad(\mathcal{L})=g f^{k} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} e=0=(\mathcal{R}) .
\end{aligned}
$$

Thm. $(k, m) \Rightarrow \operatorname{Thm} .(k, m+1)$ with $0 \leq m \leq k-1$.
We have
$(\mathcal{L})=\Phi_{k, m+1}(g, f)=D(f) \Phi_{k-1, m}(g, f)+D\left(\Phi_{k, m}(g, f)\right)=0=(\mathcal{R})$
for $0 \leq m \leq k-2$. If $m=k-1$ then

$$
\begin{gathered}
(\mathcal{L})=\Phi_{k, k}(g, f)=D(f) \Phi_{k-1, k-1}(g, f)+D\left(\Phi_{k, k-1}(g, f)\right) \\
=D(f) g D(f)^{k-1}+0=g D(f)^{k}=(\mathcal{R})
\end{gathered}
$$

The proof is finished.

Remark 1.4. Theorem 1.2 has been presented, without a proof, in [5]. A knowledge of this result was a motivation to find its generalization by U . Abel [1], where paper [5] and thus Theorem 1.2 was noticed.

If we take $g=e$ then we obtain the following identity

$$
\begin{equation*}
D(f)^{k}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} f^{j} D^{(k)}\left(f^{k-j}\right) . \tag{1.1}
\end{equation*}
$$

It was found in the case of polynomials of one variable and usual derivative operator by Beata Milówka [9] and, in the general case, by P. Ozorka in his PhD thesis (cf. informations in [5],[1]. The proof presented now is much simpler than original proofs by B. Milówka and P. Ozorka.) Later it was found by M. Baran that those identities were known earlier (cf. [8]) but nobody has applied them to polynomial inequalities as it was made by B. Milówka and P. Ozorka. It seems that it is a future for further applications of this type identities.

2. An application

We shall prove, as an application of Theorem 1.2, that there exists a constant B such that for any trigonometric polynomial T of degre N we have Bernstein's type inequality $\left\|T^{\prime}\right\| \leq B N\|T\|$. This is a sharp with respect to the exponent of N in this bound but the exact inequality holds with $B=1$. There is known that S.N. Bernstein has obtained his bound with $B=2$. We show, that we can take $B=2 e$.

A trigonometric polynomial T of degree N has a form

$$
T(t)=\sum_{j=0}^{N}\left(a_{j} \cos (j t)+b_{j} \sin (j t)\right), \| T| |=\max _{|t| \leq \pi}|T(t)|
$$

Everybody knows that $a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} T(x) d x, a_{j}=\frac{1}{\pi} \int_{-\pi}^{\pi} T(x) \cos (j x) d x, b_{j}=$ $\frac{1}{\pi} \int_{-\pi}^{\pi} T(x) \sin (j x) d x, j \geq 1$. Moreover $\frac{1}{\pi} \int_{-\pi}^{\pi}|T(x)|^{2} d x=2\left|a_{0}\right|^{2}+\sum_{j=1}^{N}\left(\left|a_{j}\right|^{2}+\right.$ $\left|b_{j}\right|^{2}$). It is clear that

$$
\begin{gathered}
\left\|T^{(k)}\right\|_{2}^{2}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left|T^{(k)}(x)\right|^{2} d x=\sum_{j=1}^{N} j^{2 k}\left(\left|a_{j}\right|^{2}+\left|b_{j}\right|^{2}\right) \\
\leq N^{2 k} \sum_{j=1}^{N}\left(\left|a_{j}\right|^{2}+\left|b_{j}\right|^{2}\right)=N^{2 k}| | T \|_{2}^{2} \\
\|T\| \leq\left|a_{0}\right|+\sum_{j=1}^{N}\left(\left|a_{j}\right|+\left|b_{j}\right|\right) \leq(2 N+1)^{1 / 2}\left(2\left|a_{0}\right|^{2}+\sum_{j=1}^{N}\left(\left|a_{j}\right|^{2}+\left|b_{j}\right|^{2}\right)\right)^{1 / 2} \\
=(2 N+1)^{1 / 2}\|T\|_{2}
\end{gathered}
$$

Now, applying Theorem 1.2, we get

$$
\begin{aligned}
\left\|T^{\prime}\right\|^{k} \leq & \frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j}\|T\|^{j}\left\|\left(T^{k-j}\right)^{(k)}\right\| \leq \frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j}\|T\|^{j}(2 N(k-j)+1)^{1 / 2}\left\|\left(T^{k-j}\right)^{(k)}\right\|_{2} \\
& \leq \frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j}\|T\|^{j}(2 N(k-j)+1)^{1 / 2}(N(k-j))^{k}\left\|\left(T^{k-j}\right)\right\|_{2}
\end{aligned}
$$

$$
\begin{gathered}
\leq \sqrt{2} \frac{1}{k!} \sum_{j=0}^{k-1}\binom{k}{j}\|T\|^{j}(2 N(k-j)+1)^{1 / 2}(N(k-j))^{k}\|T\|^{k-j} \\
=2 N^{k+1 / 2} \frac{1}{k!} \sum_{j=0}^{k-1}\binom{k}{j}((k-j)+1 / 2 N)^{1 / 2}(k-j)^{k}\|T\|^{k} \\
\leq N^{k+1 / 2} \frac{1}{k!} 2^{k+1} k^{k}(k+1 / 2)^{1 / 2}\|T\|^{k}
\end{gathered}
$$

which gives $\left\|T^{\prime}\right\| \leq 2\left(2(k+1 / 2)^{1 / 2} k^{k} / k!\right)^{1 / k} N^{1+1 / 2 k}\|T\|$ and letting $k \rightarrow$ ∞ we get inequality

$$
\begin{equation*}
\left\|T^{\prime}\right\| \leq 2 e N\|T\| \tag{2.1}
\end{equation*}
$$

As an application, applying a method from [2] (cf. also [3]), we get three bounds for algebraic polynomials:

$$
\begin{gather*}
\left|P^{\prime}(t)\right| \leq 2 e(\operatorname{deg} P)\left(1-t^{2}\right)^{-1 / 2}\|P\|_{[-1,1]}, t \in(-1,1) \tag{2.2}\\
|P(t)| \leq 2 e(\operatorname{deg} P+1)\left\|P(t) \sqrt{1-t^{2}}\right\|_{[-1,1]} \tag{2.3}\\
\left\|\left.P^{\prime}\right|_{[-1,1]} \leq 4 e^{2}(\operatorname{deg} P)^{2}\right\| P \|_{[-1,1]} \tag{2.4}
\end{gather*}
$$

The last one is Markov's inequality with sharp Markov's exponent 2 (cf. [4]). In the exact inequality exponent $4 e^{2}$ is replaced by 1 . Markov's inequality with constant e^{2} was also showed in [6] by a similar method, where Milówka version of (1.1) was used.

References

[1] U. Abel, An identity for formal derivatives in a commutative algebra, Ann. Polon. Math. 119 (2017), no. 3, 195-202.
[2] M. Baran, New approch to Markov inequality in L^{p} norms, Approximation Theory: in Memory of A. K. Varma (N. K. Govil and alt., ed.), Marcel Dekker, New York (1998), 75-85.
[3] M. Baran, Polynomial inequalities in Banach spaces, Constructive approximation of functions, 2342, Banach Center Publ., 107, Polish Acad. Sci. Inst. Math., Warsaw, (2015).
[4] M. Baran, L. Białas-Cież, B. Milówka, On the best exponent in Markov inequality, Potential Analysis, 38 (2) (2013), 635-651.
[5] M. Baran, A. Kowalska, B. Milówka, P. Ozorka, Identities for a derivation operator and their applications, Dolomites Res. Notes Approx. 8 (2015), Special Issue, 102-110.
[6] M. Baran, B. Milówka, P. Ozorka, Markov's property for k-th derivative, Annales Polonici Mathematici, 106 (2012), 31-40.
[7] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, Berlin, 1995, Graduate Texts in Mathematics 161.
[8] M. Klimek, Remarks on derivations on normed algebras, Zeszyty Nauk. Uniw. Jagiello. Prace Mat. No. 20 (1979), 161-166.
[9] B. Milówka, Markov's inequality and a generalized Plesniak condition, East J. Approx. 11 (2005), 291-300.
[10] Q. Rahman, G. Schmeisser, Analytic theory of polynomials, Clarendon Press, (2002).
[11] W. Rudin, Functional Analysis, McGraw-Hill Book
[12] E. M. Stein, Interpolation in polynomial classes and Markoff's inequality, Duke Math. J. 24 (1957), 467-476.

[^0]: *Corresponding author: miroslaw.baran@up.krakow.pl

