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Abstract
Let X be a commutative algebra with unity e and let D be a derivative on X that means the Lei-
bniz rule is satised: D(f  g) = D(f)  g +f D(g). If D(k) is k-th iteration of D then we prove that the
following identity holds for any positive integer k

As an application we prove a sharp version of Bernstein’s inequality for trigonometric polyno-
mials.
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Abstract. Let X be a commutative algebra with unity e and let D be
a derivative on X that means the Leibniz rule is satisfied: D(f · g) =
D(f) · g+ f ·D(g). If D(k) is k-th iteration of D then we prove that the
following identity holds for any positive integer k

1

k!

k∑
j=0

(−1)j
(
k

j

)
f jD(m)(gfk−j) = Φk,m(g, f) =

{
0, 0 ≤ m < k,

gD(f)k, k = m.

As an application we prove a sharp version of Bernstein’s inequality for
trigonometric polynomials.

1. An identity.

Let X be a commutative algebra with unity e and let D be a derivative
on X that means the Leibniz rule is satisfied: D(f · g) = D(f) · g+ f ·D(g).
If D(k) is k-th iteration of D (with D(0)(f) = f) then we define for f, g ∈ X

Φk,m(g, f) :=
1

k!

k∑
j=0

(−1)j
(
k

j

)
f jD(m)(gfk−j).

It is easy to check the following properties of Φk,m.

Proposition 1.1.
• Φ0,m(g, f) = D(m)(g) for m ≥ 0
• Key observation:

Φk,0(g, f) = 0, k ≥ 1.

• Basic recurrence:

Φk,m(g, f) = D(f)Φk−1,m−1(g, f) +D(Φk,m−1(g, f)).

Proof. Only the recurrence is not clear. To see it, let us calculateD(Φk,m−1(g, f))

D(Φk,m−1(g, f)) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
D(f jD(m−1)(gfk−j))

=
1

k!

k∑
j=0

(−1)j
(
k

j

)(
jf j−1D(f)D(m−1)(gfk−j) + f jD(m)(gfk−j)

)

= Φk,m(g, f) +D(f)
1

(k − 1)!

k∑
j=1

(−1)j
(
k

j

)
j

k
f j−1D(m−1)(gfk−j)

= Φk,m(g, f) − D(f)Φk−1,m−1(g, f),

*Corresponding author: miroslaw.baran@up.krakow.pl



Science, Technology and Innovation Original research papers14

Sci, Tech. Innov., 2019, 7 (4), 13-16 www.stijournal.pl

which is equivalent to the recurrence formula. �
Theorem 1.2. Let D : X −→ X be a derivation (D(g · f) = g · D(f) +
D(g) · f) on a commutative algebra X, then for any positive integer k we
have

Φk,m(g, f) =

{
0, 0 ≤ m < k,

g ·D(f)k, k = m.

Proof. (Induction with respect to k).

1. k = 1 m = 0

(L) = e · g · f − f · g = 0 = (R).

m = 1

(L) = D(g · f)− f ·D(g) = g ·D(f) = (R).

Remark 1.3. Those particular cases show, that Leibniz condition
is necessary to hold the theorem (k = 1,m = 1) and commutative
assumption is equivalent to the case k = 1,m = 0.

2. Thm.(k − 1) ⇒ Thm.(k) for k ≥ 2.
To do this, we shall prove by induction with respect to m, the

formula for 0 ≤ m ≤ k.

m = 0

(L) = gfk

k∑
j=0

(−1)j
(
k

j

)
e = 0 = (R).

Thm.(k,m) ⇒ Thm.(k,m+ 1) with 0 ≤ m ≤ k − 1.
We have

(L) = Φk,m+1(g, f) = D(f)Φk−1,m(g, f) +D(Φk,m(g, f)) = 0 = (R)

for 0 ≤ m ≤ k − 2. If m = k − 1 then

(L) = Φk,k(g, f) = D(f)Φk−1,k−1(g, f) +D(Φk,k−1(g, f))

= D(f)gD(f)k−1 + 0 = gD(f)k = (R).

The proof is finished.

�
Remark 1.4. Theorem 1.2 has been presented, without a proof, in [5]. A
knowledge of this result was a motivation to find its generalization by U.
Abel [1], where paper [5] and thus Theorem 1.2 was noticed.

If we take g = e then we obtain the following identity

(1.1) D(f)k =
1

k!

k∑
j=0

(−1)j
(
k

j

)
f jD(k)(fk−j).
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It was found in the case of polynomials of one variable and usual derivative
operator by Beata Milówka [9] and, in the general case, by P. Ozorka in
his PhD thesis (cf. informations in [5],[1]. The proof presented now is much
simpler than original proofs by B. Milówka and P. Ozorka.) Later it was
found by M. Baran that those identities were known earlier (cf. [8]) but
nobody has applied them to polynomial inequalities as it was made by B.
Milówka and P. Ozorka. It seems that it is a future for further applications
of this type identities.

2. An application

We shall prove, as an application of Theorem 1.2, that there exists a
constant B such that for any trigonometric polynomial T of degre N we
have Bernstein’s type inequality ||T ′|| ≤ BN ||T ||. This is a sharp with
respect to the exponent of N in this bound but the exact inequality holds
with B = 1. There is known that S.N. Bernstein has obtained his bound
with B = 2. We show, that we can take B = 2e.

A trigonometric polynomial T of degree N has a form

T (t) =
N∑
j=0

(aj cos(jt) + bj sin(jt)), ||T || = max
|t|≤π

|T (t)|.

Everybody knows that a0 = 1
2π

π∫
−π

T (x)dx, aj = 1
π

π∫
−π

T (x) cos(jx)dx, bj =

1
π

π∫
−π

T (x) sin(jx)dx, j ≥ 1. Moreover 1
π

π∫
−π

|T (x)|2dx = 2|a0|2 +
N∑
j=1

(|aj|2 +

|bj|2). It is clear that

||T (k)||22 =
1

π

π∫

−π

|T (k)(x)|2dx =
N∑
j=1

j2k(|aj|2 + |bj|2)

≤ N2k

N∑
j=1

(|aj|2 + |bj|2) = N2k||T ||22,

||T || ≤ |a0|+
N∑
j=1

(|aj|+ |bj|) ≤ (2N + 1)1/2

(
2|a0|2 +

N∑
j=1

(|aj|2 + |bj|2)

)1/2

= (2N + 1)1/2||T ||2.
Now, applying Theorem 1.2, we get

||T ′||k ≤ 1

k!

k∑
j=0

(
k

j

)
||T ||j||(T k−j)(k)|| ≤ 1

k!

k∑
j=0

(
k

j

)
||T ||j(2N(k−j)+1)1/2||(T k−j)(k)||2

≤ 1

k!

k∑
j=0

(
k

j

)
||T ||j(2N(k − j) + 1)1/2(N(k − j))k||(T k−j)||2

which is equivalent to the recurrence formula. �
Theorem 1.2. Let D : X −→ X be a derivation (D(g · f) = g · D(f) +
D(g) · f) on a commutative algebra X, then for any positive integer k we
have

Φk,m(g, f) =

{
0, 0 ≤ m < k,

g ·D(f)k, k = m.

Proof. (Induction with respect to k).

1. k = 1 m = 0

(L) = e · g · f − f · g = 0 = (R).

m = 1

(L) = D(g · f)− f ·D(g) = g ·D(f) = (R).

Remark 1.3. Those particular cases show, that Leibniz condition
is necessary to hold the theorem (k = 1,m = 1) and commutative
assumption is equivalent to the case k = 1,m = 0.

2. Thm.(k − 1) ⇒ Thm.(k) for k ≥ 2.
To do this, we shall prove by induction with respect to m, the

formula for 0 ≤ m ≤ k.

m = 0

(L) = gfk

k∑
j=0

(−1)j
(
k

j

)
e = 0 = (R).

Thm.(k,m) ⇒ Thm.(k,m+ 1) with 0 ≤ m ≤ k − 1.
We have

(L) = Φk,m+1(g, f) = D(f)Φk−1,m(g, f) +D(Φk,m(g, f)) = 0 = (R)

for 0 ≤ m ≤ k − 2. If m = k − 1 then

(L) = Φk,k(g, f) = D(f)Φk−1,k−1(g, f) +D(Φk,k−1(g, f))

= D(f)gD(f)k−1 + 0 = gD(f)k = (R).

The proof is finished.

�
Remark 1.4. Theorem 1.2 has been presented, without a proof, in [5]. A
knowledge of this result was a motivation to find its generalization by U.
Abel [1], where paper [5] and thus Theorem 1.2 was noticed.

If we take g = e then we obtain the following identity

(1.1) D(f)k =
1

k!

k∑
j=0

(−1)j
(
k

j

)
f jD(k)(fk−j).
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≤
√
2
1

k!

k−1∑
j=0

(
k

j

)
||T ||j(2N(k − j) + 1)1/2(N(k − j))k||T ||k−j

= 2Nk+1/2 1

k!

k−1∑
j=0

(
k

j

)
((k − j) + 1/2N)1/2(k − j)k||T ||k

≤ Nk+1/2 1

k!
2k+1kk(k + 1/2)1/2||T ||k,

which gives ||T ′|| ≤ 2
(
2(k + 1/2)1/2kk/k!

)1/k
N1+1/2k||T || and letting k →

∞ we get inequality

(2.1) ||T ′|| ≤ 2eN ||T ||.

As an application, applying a method from [2] (cf. also [3]), we get three
bounds for algebraic polynomials:

(2.2) |P ′(t)| ≤ 2e(degP )(1− t2)−1/2||P ||[−1,1], t ∈ (−1, 1),

(2.3) |P (t)| ≤ 2e(degP + 1)||P (t)
√
1− t2||[−1,1],

(2.4) ||P ′|[−1,1] ≤ 4e2(degP )2||P ||[−1,1]

The last one is Markov’s inequality with sharp Markov’s exponent 2 (cf. [4]).
In the exact inequality exponent 4e2 is replaced by 1. Markov’s inequality
with constant e2 was also showed in [6] by a similar method, where Milówka
version of (1.1) was used.
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[4] M. Baran, L. Bia�las-Cież, B. Milówka, On the best exponent in Markov inequality,
Potential Analysis, 38 (2) (2013), 635–651.

[5] M. Baran, A. Kowalska, B. Milówka, P. Ozorka, Identities for a derivation op-
erator and their applications, Dolomites Res. Notes Approx. 8 (2015), Special
Issue, 102-110.

[6] M. Baran, B. Milówka, P. Ozorka, Markov’s property for k-th derivative, Annales
Polonici Mathematici, 106 (2012), 31–40.
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