On identities for derivative operators
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As an application we prove a sharp version of Bernstein’s inequality for trigonometric polyno-
mials.
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1. AN IDENTITY.

Let X be a commutative algebra with unity e and let D be a derivative
on X that means the Leibniz rule is satisfied: D(f-g) = D(f)-g+ f- D(g).
If D®) is k-th iteration of D (with D©(f) = f) then we define for f,g € X

Spm(9, f) : k,z ()J‘”D g f*).

It is easy to check the followmg properties of @ ,,.

Proposition 1.1.

o Og.u(g, f) = D™ (g) form >0
e Key observation:

(I)k,O(gv f) = 07 k Z 1.
e Basic recurrence:

Pin(9, ) = D(f)Pr-1,m-1(9, f) + D(Prm-1(9, f))-

Proof. Only the recurrence is not clear. To see it, let us calculate D(®y, ,,,—1(g, f))

D(®pm-1(g, f k'z < ) fJD(m 1)( Fh= J))
=RV @ (G DD D (gf ) + D) (gf)

— Do )+ D(f)ﬁ Y1y (’j) ot D g )
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which is equivalent to the recurrence formula. O

Theorem 1.2. Let D : X — X be a derivation (D(g- f) = g- D(f) +
D(g) - f) on a commutative algebra X, then for any positive integer k we
have

0, 0<m<k,

Proof. (Induction with respect to k).
l.k=1m=0

(L)y=eg-f=fg=0=(R)

(L)= D(g-f)—f-D(g)=g-D(f)= (R).

Remark 1.3. Those particular cases show, that Leibniz condition
is necessary to hold the theorem (k = 1,m = 1) and commutative
assumption is equivalent to the case k = 1,m = 0.

2. Thm.(k — 1) = Thm.(k) for k > 2.
To do this, we shall prove by induction with respect to m, the
formula for 0 < m < k.
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Thm.(k,m) = Thm.(k,m+ 1) with 0 <m <k — 1.
We have

(E) = q)k,m-l-l(g? f) = D(f>q)k—1,m(gu f) + D((I)k,m<ga f)) =0= (R)
for0<m<k—2 If m=k—1 then
(L) = Prilg, f) = D(f)Pr-1k-1(9, f) + D(Prr-1(g, f))

= D(f)gD(f)* "' +0=gD(f)* = (R).
The proof is finished.
O

Remark 1.4. Theorem 1.2 has been presented, without a proof, in [5]. A
knowledge of this result was a motivation to find its generalization by U.
Abel [1], where paper [5] and thus Theorem 1.2 was noticed.

If we take g = e then we obtain the following identity

(L DU = 35 -1 () o),
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It was found in the case of polynomials of one variable and usual derivative
operator by Beata Milowka [9] and, in the general case, by P. Ozorka in
his PhD thesis (cf. informations in [5],[1]. The proof presented now is much
simpler than original proofs by B. Miléwka and P. Ozorka.) Later it was
found by M. Baran that those identities were known earlier (cf. [8]) but
nobody has applied them to polynomial inequalities as it was made by B.
Milowka and P. Ozorka. It seems that it is a future for further applications
of this type identities.

2. AN APPLICATION

We shall prove, as an application of Theorem 1.2, that there exists a
constant B such that for any trigonometric polynomial 7" of degre N we
have Bernstein’s type inequality ||77|| < BN]|T||. This is a sharp with
respect to the exponent of N in this bound but the exact inequality holds
with B = 1. There is known that S.N. Bernstein has obtained his bound
with B = 2. We show, that we can take B = 2e.

A trigonometric polynomial 7" of degree N has a form
N

T(t) = Z(aj cos(jt) + b sin(jt)), [|T1| = max T(8)]-

Everybody knows that ag = % [ T(z)dz, a; = %

—T

i\%:\

T(x)cos(jx)dz, b; =

L [ T(x)sin(jz)dz, j > 1. Moreover * [ |T(z)[*dz = 2|ao|* + Z(|a]\2
—T —T J_
;). Tt is clear that
17015 = l/!T(k)(fE)\zdl‘ = XN:J'%(!@'\Q +1b1%)
2= 2 j j
N
<Ny (g + 1b7) = N2H|T[5,
j=1
N 1/2
Tl < laol +Z la| + [bs]) < (2N + 1) <2la P4+ >l + 1yl ))
j=1 j=1
= (2N + 1)Y|T|l;.
Now, applying Theorem 1.2, we get
k
1
WW—MEZ(NHWT“ gXX)uW2MkaWm@“V%
=0

<52 (5)Impent— i+ - el

J=0
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<vagp X () Imieens - i) + vt - e

—1
=0
_2Nk’+1/21 — k k . 1/2N 1/2 k -\ k T k
= sz(( —J)+1/2N)"=(k = 5)"(|T]|
=0

1
< NFHUZ gk g+ 1/2) 2 T,

which gives ||T"]] < 2 (2(k + 1/2)1/2kk/k!)1/k N'1/26|T|| and letting k —
oo we get inequality

(2.1) 1]} < 2eN||T].

As an application, applying a method from [2] (cf. also [3]), we get three
bounds for algebraic polynomials:

(22)  |P/(0)] < 2e(deg P)(1— ) ||Pl| 1, £ € (~1,1),
(2.3) [P()] < 2e(deg P+ DI POV — 2ll11,
(2.4) 1P'li—1.) < 4¢*(deg PY?||Plli-1

The last one is Markov’s inequality with sharp Markov’s exponent 2 (cf. [4]).
In the exact inequality exponent 4e? is replaced by 1. Markov’s inequality
with constant e? was also showed in [6] by a similar method, where Miléwka
version of (1.1) was used.
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