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1. INTRODUCTION.

Consider a normed space (P(C), || -||) of polynomials of one variable
equipped with a norm || - ||. The classical Vladiimir Markov inequality (cf.
[8],[16]) is the following inequality for k-th derivative of a polynomial P of
degree n
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with an absolute constant C'. The meaning and its importance of the con-
dition

deg P)km

po) < or 8L
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was discovered in [2]. Grzegorz Sroka in his paper [20], motivated by [1] has
obtained the inequality

1P o-1,1) < (Crlp + D) YPITP |,y Plle-1,,s
where constants C}, are bounded and 7} are Chebyshev polynomials of the

first kind (he showed that Cj < %62 for k > 3). As a corollary he derived

the inequality of V. Markov’s type

1
1PF N e < By Pllzrs.

Let us note that looking for optimal bounds of a type
||P(k)||p1 < Cn(kvplva)HPszv n= degP

is a subject of many investigations (cf. [12], [19], [7]).
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2. VLADIIMIR MARKOV’S TYPE INEQUALITY

The main result of this note is the following improvement of [20] in the
case 1 < p <2 (our arguments are quite different that used in [20]).

Theorem 2.1. If 1 < p < 2, then for any polynomial P of degree k <
deg P < n we have inequalities

k 2 2
1PO], < By max [|T7||n7 || Pll, = BT e || P,

where
1/p

1
1Pl = | [1P@Pds| . B, = Ge/mrizp+ 2
1

Here T, are the classical Chebyshev’s polynomaials of the first kind.

As a non-obvious corollary we obtain a version of V. Markov’s property
(it is a consequence of a fact that derivatives of T, are related to other
Jacobi polynomials). It was discussed in [4], mainly in the case p = 2.

Corollary 2.2. For a fized 1 < p < 2 there exists a constant C, such that
for all k > 3 we have Viadimir Markov’s type inequality
1
PO, < Chn®| Pl
Remark 2.3. The corollary is also true in the case £ = 1,2 but can not be
derived from Theorem 2.1 (cf. remarks in [1] related to Z. Ciesielski results
from [10] who investigated the behavior of ||T},||,). In the case k = 2 and

1 < p <2 we can get a bound as in the corollary but with much worse
constants.

In the proof of Theorem 2.1 we shall need the following important result.
Let = cost = (e +¢7") be element in the Wiener algebra of an absolute

o0

convergent trigonometric seriesx = > a,e™ equipped with the ! Wiener
n=—oo
[e.e]
norm wy(z) = > |ag|
k=—o00

Let Xy = (Py,wi(P(x))), B¥(z) = {P € Py : wi(P(z)) < 1}, where
Py={PcP(C): degP < N}.
Proposition 2.4. (Baran,Miléwka,Ozorka [5]) For an arbitrary N € N
extr(BY(x)) = {noTy, ...,onTn: |n5l =1, 7=0,...,N}.

Here extr(BN(z)) is the set of extreme points of the ball B (z) (cf.
[17] for this very classical notion and its importance), 7} is j-th Chebyshev
polynomial of the first kind.
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Corollary 2.5. If L is a linear operator on Py then its norm between
(Pn, w1 (P(x))) and (Pn, ||||p) is equal to [max \|LT}||, that means ||LP||, <
<<

max || LT}||,wi(P(x)) for P € Pn.

0<j<N

Now we shall prove Theorem 2.1.

Proof. Let P(cost) = > ¢;e'". We have, by the Holder inequality,

j=-—n
n n l/q
> leil < 2+ 1) (Z |cj|q)
j=—n j=—n

and applying the Hausdorff-Young inequality (c.f. [6],[22], which is a conse-
quence of interpolation properties of spaces L), we shall get

1/p

Z ;] < (2n+ 1)Y/P /|P (cost)|Pdt

j=-n

Now we shall use the inequality like [13] (Lemma 3.1, p. 733)
] T » ) s |
By |P(cost)Pdt < 2np(1+ 1/(np))"™” by |P(cost)|P|sint|dt,
T T

which gives

wy(P(cost)) Z |cj]

‘]7—71/
1/p

< (2n+ D)YP2p + 1/n)VP(1 4 1/(np))"n*/P /|P (cost)|P|sint]|

< Apn2/p||P||p
with A, = (3e)/P(2p + 1)V/.
Now the crucial step is to apply Corollary 2.5, which gives the most
important bound

k
PO, < max [|T],wn (P(cost).
Applying the bound for w; (P(cost)) we finish the proof:
k
1P®], < max [|T]],B,n*"|| Pl

with B, = A,/7/P. O

Remark 2.6. Let us note the following surprising fact, which can be ob-
served in the proof above: a bound of the form w; (P(cost)) < B,n??||P||, is
analogous to the bound (Nikolski type inequality) || P||j_1,; < Con*?||P|l,,
but wi(P(cost)) can not be estimated by a product of a constant and
1Pl i-1-
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