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We prove inequality       ; 
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A method presented in this note is based on a factorization of linear operator of k-th derivative 
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ON VLADIIMIR MARKOV TYPE INEQUALITY
IN Lp NORMS ON THE INTERVAL [−1, 1]

MIROS�LAW BARAN AND PAWE�L OZORKA

Abstract. We prove inequality

||P (k)||Lp(−1,1) ≤ Bp||T (k)
n ||Lp(−1,1)n

2
p ||P ||Lp(−1,1),

where Bp are constants independent of n = degP with 1 ≤ p ≤ 2, which
is sharp in the case k ≥ 3. A method presented in this note is based on
a factorization of linear operator of k-th derivative throughout normed
spaces of polynomial equipped with a Wiener type norm.

1. Introduction.

Consider a normed space (P(C), || · ||) of polynomials of one variable
equipped with a norm || · ||. The classical Vladiimir Markov inequality (cf.
[8],[16]) is the following inequality for k-th derivative of a polynomial P of
degree n

||P (k)||[−1,1] ≤ T (k)
n (1)||P ||[−1,1] =

n2(n2 − 1) · · · (n2 − (k − 1)2)

1 · 3 · · · (2k − 1)
||P ||[−1,1]

(1.1) ≤ Ckn
2k

k!
||P ||[−1,1]

with an absolute constant C. The meaning and its importance of the con-
dition

||P (k)|| ≤ Ck (degP )km

(k!)m−1
||P ||

was discovered in [2]. Grzegorz Sroka in his paper [20], motivated by [1] has
obtained the inequality

||P (k)||Lp(−1,1) ≤ (Ck(p+ 1)k2)1/p||T (k)
n ||[−1,1]||P ||Lp(−1,1),

where constants Ck are bounded and Tj are Chebyshev polynomials of the
first kind (he showed that Ck ≤ 12

3√2
e2 for k ≥ 3). As a corollary he derived

the inequality of V. Markov’s type

||P (k)||Lp(−1,1) ≤ Bk
p

1

k!
n2k||P ||Lp(−1,1).

Let us note that looking for optimal bounds of a type

||P (k)||p1 ≤ Cn(k, p1, p2)||P ||p2 , n = degP

is a subject of many investigations (cf. [12], [19], [7]).
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2. Vladiimir Markov’s type inequality

The main result of this note is the following improvement of [20] in the
case 1 ≤ p ≤ 2 (our arguments are quite different that used in [20]).

Theorem 2.1. If 1 ≤ p ≤ 2, then for any polynomial P of degree k ≤
degP ≤ n we have inequalities

||P (k)||p ≤ Bp max
k≤l≤n

||T (k)
l ||pn

2
p ||P ||p = Bp||T (k)

n ||pn
2
p ||P ||p,

where

||P ||p =




1∫

−1

|P (x)|pdx




1/p

, Bp = (3e/π)1/p(2p+ 2)1/p.

Here Tn are the classical Chebyshev’s polynomials of the first kind.

As a non-obvious corollary we obtain a version of V. Markov’s property
(it is a consequence of a fact that derivatives of Tn are related to other
Jacobi polynomials). It was discussed in [4], mainly in the case p = 2.

Corollary 2.2. For a fixed 1 ≤ p ≤ 2 there exists a constant Cp such that
for all k ≥ 3 we have Vladimir Markov’s type inequality

||P (k)||p ≤ Ck
p

1

k!
n2k||P ||p.

Remark 2.3. The corollary is also true in the case k = 1, 2 but can not be
derived from Theorem 2.1 (cf. remarks in [1] related to Z. Ciesielski results
from [10] who investigated the behavior of ||T ′

n||p). In the case k = 2 and
1 < p ≤ 2 we can get a bound as in the corollary but with much worse
constants.

In the proof of Theorem 2.1 we shall need the following important result.
Let x = cos t = 1

2
(eit+e−it) be element in the Wiener algebra of an absolute

convergent trigonometric series x =
∞∑

n=−∞
ane

int equipped with the l1 Wiener

norm w1(x) =
∞∑

k=−∞
|ak|.

Let XN = (PN , w1(P (x))), BN(x) = {P ∈ PN : w1(P (x)) ≤ 1}, where
PN = {P ∈ P(C) : degP ≤ N}.

Proposition 2.4. (Baran,Milówka,Ozorka [5]) For an arbitrary N ∈ N

extr(BN(x)) = {η0T0, . . . , ηNTN : |ηj| = 1, j = 0, . . . , N}.

Here extr(BN(x)) is the set of extreme points of the ball BN(x) (cf.
[17] for this very classical notion and its importance), Tj is j-th Chebyshev
polynomial of the first kind.
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Corollary 2.5. If L is a linear operator on PN then its norm between
(PN , w1(P (x))) and (PN , ||·||p) is equal to max

0≤j≤N
||LTj||p that means ||LP ||p ≤

max
0≤j≤N

||LTj||pw1(P (x)) for P ∈ PN .

Now we shall prove Theorem 2.1.

Proof. Let P (cos t) =
n∑

j=−n

cje
ijt. We have, by the Hölder inequality,

n∑
j=−n

|cj| ≤ (2n+ 1)1/p

(
n∑

j=−n

|cj|q
)1/q

and applying the Hausdorff-Young inequality (c.f. [6],[22], which is a conse-
quence of interpolation properties of spaces Lp), we shall get

n∑
j=−n

|cj| ≤ (2n+ 1)1/p


 1

2π

π∫

−π

|P (cos t)|pdt




1/p

.

Now we shall use the inequality like [13] (Lemma 3.1, p. 733)

1

2π

π∫

−π

|P (cos t)|pdt ≤ 2np(1 + 1/(np))np+1 1

2π

π∫

−π

|P (cos t)|p| sin t|dt,

which gives

w1(P (cos t)) =
n∑

j=−n

|cj|

≤ (2n+ 1)1/p(2p+ 1/n)1/p(1 + 1/(np))nn1/p


 1

2π

π∫

−π

|P (cos t)|p| sin t|




1/p

≤ Apn
2/p||P ||p

with Ap = (3e)1/p(2p+ 1)1/p.
Now the crucial step is to apply Corollary 2.5, which gives the most

important bound

||P (k)||p ≤ max
k≤l≤n

||T (k)
l ||pw1(P (cos t)).

Applying the bound for w1(P (cos t)) we finish the proof:

||P (k)||p ≤ max
k≤l≤n

||T (k)
l ||pBpn

2/p||P ||p

with Bp = Ap/π
1/p. �

Remark 2.6. Let us note the following surprising fact, which can be ob-
served in the proof above: a bound of the form w1(P (cos t)) ≤ Bpn

2/p||P ||p is
analogous to the bound (Nikolski type inequality) ||P ||[−1,1] ≤ C ′

pn
2/p||P ||p,

but w1(P (cos t)) can not be estimated by a product of a constant and
||P ||[−1,1].

2. Vladiimir Markov’s type inequality

The main result of this note is the following improvement of [20] in the
case 1 ≤ p ≤ 2 (our arguments are quite different that used in [20]).

Theorem 2.1. If 1 ≤ p ≤ 2, then for any polynomial P of degree k ≤
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||P (k)||p ≤ Bp max
k≤l≤n

||T (k)
l ||pn

2
p ||P ||p = Bp||T (k)

n ||pn
2
p ||P ||p,

where

||P ||p =




1∫

−1

|P (x)|pdx




1/p

, Bp = (3e/π)1/p(2p+ 2)1/p.
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||P (k)||p ≤ Ck
p

1

k!
n2k||P ||p.
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k=−∞
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