Chebyshev Polynomials and Continued Fractions Related

Jerzy Szczepański

Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków

Article history:

Received 21 December 2019
Received in revised form
28 December 2019
Accepted 29 December 2019
Available online 31 December 2019

Abstract
 Let p, q be complex polynomials, $\operatorname{deg} p>\operatorname{deg} q \geq 0$. We consider the family of polynomials defined by the recurrence $P_{n+1}=2 p P_{n}-q P_{n-1}$ for $n=1,2,3, \ldots$ with arbitrary
 P_{1} and P_{0} as well as the domain of the convergence of the infinite continued fraction

$$
f(z)=2 p(z)-\frac{q(z)}{2 p(z)-\frac{q(z)}{2 p(z)-\ldots}} .
$$

Key words: Chebyshev polynomials, continued fractions, Binet formula, Cassini identity

1 Some polynomials of the Chebyshev type

Let P_{0} and P_{1} be polynomials of one complex variable, $\operatorname{deg} P_{1}>\operatorname{deg} P_{0} \geq 0$. Let p, q be polynomials of one complex variable, $\operatorname{deg} p>\operatorname{deg} q \geq 0, q \neq 0$. Define the family of polynomials P_{n} by the recurrence formula

$$
\begin{equation*}
P_{n+1}(z)=2 p(z) P_{n}(z)-q(z) P_{n-1}(z), \quad n=1,2,3, \ldots \tag{1}
\end{equation*}
$$

Note that (1) gives the Chebyshev polynomials of

- the first kind T_{n} for $P_{0}(z)=1, P_{1}(z)=z, p(z)=z$ and $q(z)=1$
- the second kind U_{n} for $P_{0}(z)=1, P_{1}(z)=2 z, p(z)=z$ and $q(z)=1$
- the third kind V_{n} for $P_{0}(z)=1, P_{1}(z)=2 z-1, p(z)=z$ and $q(z)=1$
- the fourth kind W_{n} for $P_{0}(z)=1, P_{1}(z)=2 z+1, p(z)=z$ and $q(z)=1$.
(See [2], Appendix B, Table B.2).
We write the recurrence (1) in the matrix form

$$
\left[\begin{array}{cc}
P_{n+1} & P_{n} \tag{2}\\
P_{n} & P_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
P_{n} & P_{n-1} \\
P_{n-1} & P_{n-2}
\end{array}\right]
$$

proceeding as in [1], p.80, where the Fibonacci sequence was considered, defined by the similar recurrence $\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}F_{n} & F_{n-1} \\ F_{n-1} & F_{n-2}\end{array}\right]$ with $F_{0}=0$ and $F_{1}=1$.

Note that the characteristic polynomial

$$
w(\lambda)=\operatorname{det}\left[\begin{array}{cc}
2 p-\lambda & -q \\
1 & -\lambda
\end{array}\right]=(\lambda-p)^{2}-p^{2}+q
$$

[^0]of the matrix
\[

\left[$$
\begin{array}{cc}
2 p & -q \tag{3}\\
1 & 0
\end{array}
$$\right]
\]

addmits two different roots

$$
\begin{equation*}
\lambda_{1}=p+\sqrt{p^{2}-q} \text { and } \lambda_{2}=p-\sqrt{p^{2}-q} \tag{4}
\end{equation*}
$$

as the polynomial q is assumed to be nonzero.
Theorem 1.1 For the polynomial P_{n} defined by (1) we get the following formula

$$
\begin{equation*}
P_{n}=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) P_{1}-\lambda_{1} \lambda_{2}\left(\lambda_{1}^{n-1}-\lambda_{2}^{n-1}\right) P_{0}\right] \tag{5}
\end{equation*}
$$

where λ_{1} and λ_{2} are the eigenvalues (4) of the matrix (3).
Proof. By the Jordan decomposition of the matrix (3) we get

$$
\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right] .
$$

The n-th power of the matrix (3) equals

$$
\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]^{n}=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right]\left[\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right] .
$$

Hence, by the recurrence

$$
\begin{aligned}
{\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right] } & =\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
P_{n} & P_{n-1} \\
P_{n-1} & P_{n-2}
\end{array}\right]=\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]^{2}\left[\begin{array}{ll}
P_{n-1} & P_{n-2} \\
P_{n-2} & P_{n-3}
\end{array}\right]=\ldots \\
& =\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]^{n-1}\left[\begin{array}{ll}
P_{2} & P_{1} \\
P_{1} & P_{0}
\end{array}\right]
\end{aligned}
$$

we obtain

$$
\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right]=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{n-1} & 0 \\
0 & \lambda_{2}^{n-1}
\end{array}\right]\left[\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right]\left[\begin{array}{ll}
P_{2} & P_{1} \\
P_{1} & P_{0}
\end{array}\right] .
$$

Multiplying the above matrices we get

$$
P_{n}=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) P_{1}-\lambda_{1} \lambda_{2}\left(\lambda_{1}^{n-1}-\lambda_{2}^{n-1}\right) P_{0}\right]
$$

Note that (5) corresponds to the well known Binet formula for the Fibonacci sequence

$$
F_{n}=\frac{\mu_{1}^{n}-\mu_{2}^{n}}{\mu_{1}-\mu_{2}}=\frac{1}{\sqrt{5}}\left[\left(\frac{\sqrt{5}+1}{2}\right)^{n}-\left(\frac{-\sqrt{5}+1}{2}\right)^{n}\right]
$$

where $\mu_{1}=\frac{\sqrt{5}+1}{2}$ and $\mu_{2}=\frac{-\sqrt{5}+1}{2}$ are eigenvalues of the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ that defines the Fibonacci sequence $\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}F_{n} & F_{n-1} \\ F_{n-1} & F_{n-2}\end{array}\right]$ with $F_{0}=0$ and $F_{1}=1$.
Remark 1.2 The formula (5) works well with two known formulae (see [2] 1.49 and 1.52) for the Chebyshev polynomials of the first kind $T_{0}(x)=1, T_{1}(x)=x, T_{n+1}(x)=2 x T_{n}(x)-$ $T_{n-1}(x)$ if we put $p(x)=x, q(x)=1, \lambda_{1}(x)=x+\sqrt{x^{2}-1}, \lambda_{2}(x)=x-\sqrt{x^{2}-1}, P_{0}(x)=1$ and $P_{1}(x)=x$:

$$
\begin{aligned}
T_{n}(x) & =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) x-\left(\lambda_{1}^{n-1}-\lambda_{2}^{n-1}\right)\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\lambda_{1}^{n}\left(x-\frac{1}{\lambda_{1}}\right)-\lambda_{2}^{n}\left(x-\frac{1}{\lambda_{2}}\right)\right] \\
& =\frac{1}{2}\left(\lambda_{1}^{n}+\lambda_{2}^{n}\right) \\
& =\frac{1}{2}\left(\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right), \quad|x| \geq 1
\end{aligned}
$$

and for the Chebyshev polynomials of the second kind $U_{0}(x)=1, U_{1}(x)=2 x, U_{n+1}(x)=$ $2 x U_{n}(x)-U_{n-1}(x)$ if we put $p(x)=x, q(x)=1, \lambda_{1}(x)=x+\sqrt{x^{2}-1}, \lambda_{2}(x)=x-\sqrt{x^{2}-1}$, $P_{0}(x)=1$ and $P_{1}(x)=2 x$:

$$
\begin{aligned}
U_{n}(x) & =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) 2 x-\left(\lambda_{1}^{n-1}-\lambda_{2}^{n-1}\right)\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\lambda_{1}^{n}\left(2 x-\frac{1}{\lambda_{1}}\right)-\lambda_{2}^{n}\left(2 x-\frac{1}{\lambda_{2}}\right)\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\lambda_{1}^{n+1}-\lambda_{2}^{n+1}\right) \\
& =\frac{1}{2 \sqrt{x^{2}-1}}\left(\left(x+\sqrt{x^{2}-1}\right)^{n+1}-\left(x-\sqrt{x^{2}-1}\right)^{n+1}\right), \quad|x| \geq 1 .
\end{aligned}
$$

Proceeding as above we get the next two formulae for the Chebyshev polynomials of the third and the fourth kind V_{n}, W_{n}, respectively:

$$
\begin{aligned}
V_{n}(x) & =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right)(2 x-1)-\left(\lambda_{1}^{n-1}-\lambda_{2}^{n-1}\right)\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\lambda_{1}^{n}\left(2 x-1-\frac{1}{\lambda_{1}}\right)-\lambda_{2}^{n}\left(2 x-1-\frac{1}{\lambda_{2}}\right)\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\lambda_{1}^{n+1}-\lambda_{2}^{n+1}\right)-\frac{1}{\lambda_{1}-\lambda_{2}}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) \\
& =U_{n}(x)-U_{n-1}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
W_{n}(x) & =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right)(2 x+1)-\left(\lambda_{1}^{n-1}-\lambda_{2}^{n-1}\right)\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\lambda_{1}^{n}\left(2 x+1-\frac{1}{\lambda_{1}}\right)-\lambda_{2}^{n}\left(2 x+1-\frac{1}{\lambda_{2}}\right)\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\lambda_{1}^{n+1}-\lambda_{2}^{n+1}\right)+\frac{1}{\lambda_{1}-\lambda_{2}}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) \\
& =U_{n}(x)+U_{n-1}(x)
\end{aligned}
$$

Remark 1.3 If $\operatorname{deg} q=0$, i.e. q is a nonzero constant, one may continue defining polynomials P_{n} for negative integers putting initial polynomials P_{0}, P_{1} arbitrarily and the recurrence formula $P_{n-1}=-\frac{1}{q} P_{n+1}+\frac{2 p}{q} P_{n}$ equivalent to the relation $P_{n+1}=2 p P_{n}(z)-q P_{n-1}$. Same as before we have

$$
\left[\begin{array}{cc}
P_{n} & P_{n-1} \\
P_{n-1} & P_{n-2}
\end{array}\right]=\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]^{-1}\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right]
$$

as

$$
\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right]
$$

We obtain

$$
\left[\begin{array}{cc}
P_{0} & P_{-1} \\
P_{-1} & P_{-2}
\end{array}\right]=\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]^{-1}\left[\begin{array}{cc}
P_{1} & P_{0} \\
P_{0} & P_{-1}
\end{array}\right]
$$

and

$$
\begin{aligned}
{\left[\begin{array}{cc}
P_{-n+1} & P_{-n} \\
P_{-n} & P_{-n-1}
\end{array}\right] } & =\left[\begin{array}{cc}
2 p & -q \\
1 & 0
\end{array}\right]^{-n}\left[\begin{array}{cc}
P_{1} & P_{0} \\
P_{0} & P_{-1}
\end{array}\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{-n} & 0 \\
0 & \lambda_{2}^{-n}
\end{array}\right]\left[\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right]\left[\begin{array}{cc}
P_{1} & P_{0} \\
P_{0} & P_{-1}
\end{array}\right]
\end{aligned}
$$

Multiplying the above matrices we get an analogous formula as (5) in Theorem 1.1:

$$
P_{-n}=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\left(\lambda_{1}^{-n}-\lambda_{2}^{-n}\right) P_{1}-\lambda_{1} \lambda_{2}\left(\lambda_{1}^{-n-1}-\lambda_{2}^{-n-1}\right) P_{0}\right]
$$

Calculating the determinant of the matrix

$$
\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right]=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{n-1} & 0 \\
0 & \lambda_{2}^{n-1}
\end{array}\right]\left[\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right]\left[\begin{array}{cc}
P_{2} & P_{1} \\
P_{1} & P_{0}
\end{array}\right]
$$

we get the Cassini type identity for the polynomials P_{n}, corresponding to the Cassini identity for the Fibonacci sequence $F_{n+1} F_{n-1}-F_{n}^{2}=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}=(-1)^{n}$:

$$
\begin{aligned}
\left(\lambda_{1}-\lambda_{2}\right)^{2} \operatorname{det}\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right] & =\operatorname{det}\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right] \operatorname{det}\left[\begin{array}{cc}
\lambda_{1}^{n-1} & 0 \\
0 & \lambda_{2}^{n-1}
\end{array}\right] \operatorname{det}\left[\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right] \operatorname{det}\left[\begin{array}{cc}
P_{2} & P_{1} \\
P_{1} & P_{0}
\end{array}\right] \\
\operatorname{det}\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right] & =\operatorname{det}\left[\begin{array}{cc}
\lambda_{1}^{n-1} & 0 \\
0 & \lambda_{2}^{n-1}
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
P_{2} & P_{1} \\
P_{1} & P_{0}
\end{array}\right]
\end{aligned}
$$

Since $\lambda_{1} \lambda_{2}=q$ we get the following remark.
Remark 1.4 The Cassini type identity for the polynomials P_{n} defined by (1) holds:

$$
P_{n+1} P_{n-1}-P_{n}^{2}=q^{n-1}\left(P_{2} P_{0}-P_{1}^{2}\right)
$$

which implies the four known formulae for the Chebyshev polynomials of the first, second, third and fourth kind, respectively:

$$
\begin{array}{llr}
T_{n+1}(x) T_{n-1}(x) & -T_{n}^{2}(x)= & x^{2}-1 \\
U_{n+1}(x) U_{n-1}(x) & -U_{n}^{2}(x)= & -1 \\
V_{n+1}(x) V_{n-1}(x) & -V_{n}^{2}(x)= & -2 x-2 \\
W_{n+1}(x) W_{n-1}(x) & -W_{n}^{2}(x)= & 2 x-2 .
\end{array}
$$

Theorem 1.5 Let P_{n} be the sequence of polynomials defined by (1). The quotient P_{n+1} / P_{n} converges uniformly on compact subsets of the set

$$
\left\{z \in \mathbb{C}:\left|\frac{\lambda_{1}(z)}{\lambda_{2}(z)}\right|>1\right\}
$$

to the limit λ_{1}. The limit does not depend on the initial polynomials P_{0} and P_{1}.
Proof. By (5) the quotient of polynomials P_{n+1} and P_{n} equals

$$
\begin{aligned}
\frac{P_{n+1}}{P_{n}} & =\frac{\left(\lambda_{1}^{n+1}-\lambda_{2}^{n+1}\right) P_{1}-\lambda_{1} \lambda_{2}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) P_{0}}{\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right) P_{1}-\lambda_{1} \lambda_{2}\left(\lambda_{1}^{n-1}-\lambda_{2}^{n-1}\right) P_{0}} \\
& =\frac{\left(\lambda_{1}-\lambda_{2}\left(\lambda_{2} / \lambda_{1}\right)^{n}\right) P_{1}-\lambda_{1} \lambda_{2}\left(1-\left(\lambda_{2} / \lambda_{1}\right)^{n}\right) P_{0}}{\left(1-\left(\lambda_{2} / \lambda_{1}\right)^{n}\right) P_{1}-\lambda_{2}\left(1-\left(\lambda_{2} / \lambda_{1}\right)^{n-1}\right) P_{0}}
\end{aligned}
$$

It converges on compact subesets the set $\left\{z \in \mathbb{C}:\left|\frac{\lambda_{1}(z)}{\lambda_{2}(z)}\right|>1\right\}$ uniformly to the limit

$$
\frac{\lambda_{1} P_{1}-\lambda_{1} \lambda_{2} P_{0}}{P_{1}-\lambda_{2} P_{0}}=\lambda_{1}
$$

that is independent of P_{0} and P_{1}.

2 Continued fractions related to polynomials P_{n}

Consider the infinite continued fraction

$$
f(z)=2 p(z)-\frac{q(z)}{2 p(z)-\frac{q(z)}{2 p(z)-\ldots}}
$$

and the rational functions r_{k} related to f :

$$
\begin{array}{rlrl}
r_{1} & =P_{1} / P_{0} & & =2 p-\frac{q}{P_{1} / P_{0}} \\
r_{2} & =P_{2} / P_{1} & =\frac{2 p P_{1}-q P_{0}}{P_{1}} & =2 p-\frac{q}{P_{2} / P_{1}} \\
r_{3} & =P_{3} / P_{2} & =\frac{2 p P_{2}-q P_{1}}{P_{2}} & \\
\ldots \ldots & \cdots \cdots & \cdots \\
r_{n+1} & =P_{n+1} / P_{n} & =\frac{2 p P_{n}-q P_{n-1}}{P_{n-1}}=2 p-\frac{q}{P_{n} / P_{n-1}}
\end{array}
$$

It is easy to see that the function f is the limit of the sequence r_{k}.
Theorem 2.1 For arbitrary polynomials p and q such that $\operatorname{deg} p>\operatorname{deg} q>0, q \neq 0$, the continued fraction

$$
f(z)=2 p(z)-\frac{q(z)}{2 p(z)-\frac{q(z)}{2 p(z)-\cdots}}
$$

is a holomorphic function on the set $\left\{z \in \mathbb{C}:\left|\frac{\lambda_{1}(z)}{\lambda_{2}(z)}\right|>1\right\}$ where λ_{1} and λ_{2} are eigenvalues (4) of the matrix (3).

Proof. The statement follows from Theorem 1.5.
Remark 2.2. In the simple case $p(z)=2 \alpha z$ and $q(z)=\beta^{2}$ the set $\left\{z \in \mathbb{C}:\left|\frac{\lambda_{1}(z)}{\lambda_{2}(z)}\right|>1\right\}$ is the exterior of the interval connecting two points on the complex plane: $\frac{\beta}{\alpha}$ and $-\frac{\beta}{\alpha}$. See Figure 1 for the density plot of the absolute value of the function r_{60} for $p(z)=2 z$ and $q(z)=i=\left(\frac{1+i}{\sqrt{2}}\right)^{2}$ with a visible scar connecting the points $-\frac{1+i}{\sqrt{2}}$ and $\frac{1+i}{\sqrt{2}}$. The following plots exhibit the density plot of $\left|r_{60}\right|$ and more complex scars containing points where the sequence r_{k} is divergent if $p(z)=z^{2}+\frac{i}{10}, q(z)=i$ (Figure 2), $p(z)=i z^{3}+\frac{1}{2}, q(z)=-\frac{1}{3}$ (Figure 3), $p(z)=i z^{2}-\frac{1}{5} z+\frac{1}{10}, q(z)=\left(i-\frac{1}{3}\right) z+\frac{i}{7}+\frac{1}{5}$ (Figure 4).

The plots were created using Mathematica Wolfram Research program.

References

[1] Donald E. Knuth, The Art of Computer Programming, Addison Wesley, 2nd edition, 1973.
[2] John C. Mason, David Handscomb, Chebyshev polynomials, Chapman \& Hall, 2003.

Figure 1: Density plot of $\left|r_{60}\right|$ for $p(z)=2 z$ and $q(z)=i$.

Figure 2: Density plot of $\left|r_{60}\right|$ for $p(z)=z^{2}+\frac{i}{10}, q(z)=i$.

Figure 3: Density plot of $\left|r_{60}\right|$ for $p(z)=i z^{3}+\frac{1}{2}, q(z)=-\frac{1}{3}$.

Figure 4: Density plot of $\left|r_{60}\right|$ for $p(z)=i z^{2}-\frac{1}{5} z+\frac{1}{10}, q(z)=\left(i-\frac{1}{3}\right) z+\frac{i}{7}+\frac{1}{5}$.

[^0]: *Corresponding author: Jerzy Szczepański,
 e-mail Jerzy.Szczepanski@uj.edu.pl

