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Abstract. Let p, q be complex polynomials, deg p > deg q ≥ 0. We consider the family
of polynomials defined by the recurrence Pn+1 = 2pPn−qPn−1 for n = 1, 2, 3, ... with arbitrary
P1 and P0 as well as the domain of the convergence of the infinite continued fraction

f(z) = 2p(z)−
q(z)

2p(z)−
q(z)

2p(z)− ...

.
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1 Some polynomials of the Chebyshev type

Let P0 and P1 be polynomials of one complex variable, degP1 > degP0 ≥ 0. Let p, q
be polynomials of one complex variable, deg p > deg q ≥ 0, q �= 0. Define the family of
polynomials Pn by the recurrence formula

Pn+1(z) = 2p(z)Pn(z)− q(z)Pn−1(z), n = 1, 2, 3, .... (1)

Note that (1) gives the Chebyshev polynomials of

• the first kind Tn for P0(z) = 1, P1(z) = z, p(z) = z and q(z) = 1

• the second kind Un for P0(z) = 1, P1(z) = 2z, p(z) = z and q(z) = 1

• the third kind Vn for P0(z) = 1, P1(z) = 2z − 1, p(z) = z and q(z) = 1

• the fourth kind Wn for P0(z) = 1, P1(z) = 2z + 1, p(z) = z and q(z) = 1.

(See [2], Appendix B, Table B.2).
We write the recurrence (1) in the matrix form

[
Pn+1 Pn

Pn Pn−1

]
=

[
2p −q
1 0

] [
Pn Pn−1

Pn−1 Pn−2

]
(2)

proceeding as in [1], p.80, where the Fibonacci sequence was considered, defined by the

similar recurrence

[
Fn+1 Fn

Fn Fn−1

]
=

[
1 1
1 0

] [
Fn Fn−1

Fn−1 Fn−2

]
with F0 = 0 and F1 = 1.

Note that the characteristic polynomial

w(λ) = det

[
2p− λ −q

1 −λ

]
= (λ− p)2 − p2 + q
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of the matrix [
2p −q
1 0

]
(3)

addmits two different roots

λ1 = p+
√
p2 − q and λ2 = p−

√
p2 − q, (4)

as the polynomial q is assumed to be nonzero.

Theorem 1.1 For the polynomial Pn defined by (1) we get the following formula

Pn =
1

λ1 − λ2

[(
λn
1 − λn

2

)
P1 − λ1λ2

(
λn−1
1 − λn−1

2

)
P0

]
(5)

where λ1 and λ2 are the eigenvalues (4) of the matrix (3).

Proof. By the Jordan decomposition of the matrix (3) we get

[
2p −q
1 0

]
=

1

λ1 − λ2

[
λ1 λ2

1 1

] [
λ1 0
0 λ2

] [
1 −λ2

−1 λ1

]
.

The n-th power of the matrix (3) equals

[
2p −q
1 0

]n
=

1

λ1 − λ2

[
λ1 λ2

1 1

] [
λn
1 0
0 λn

2

] [
1 −λ2

−1 λ1

]
.

Hence, by the recurrence

[
Pn+1 Pn

Pn Pn−1

]
=

[
2p −q
1 0

] [
Pn Pn−1

Pn−1 Pn−2

]
=

[
2p −q
1 0

]2 [
Pn−1 Pn−2

Pn−2 Pn−3

]
= ...

=

[
2p −q
1 0

]n−1 [
P2 P1

P1 P0

]

we obtain
[
Pn+1 Pn

Pn Pn−1

]
=

1

λ1 − λ2

[
λ1 λ2

1 1

] [
λn−1
1 0
0 λn−1

2

] [
1 −λ2

−1 λ1

] [
P2 P1

P1 P0

]
.

Multiplying the above matrices we get

Pn =
1

λ1 − λ2

[(
λn
1 − λn

2

)
P1 − λ1λ2

(
λn−1
1 − λn−1

2

)
P0

]

�
Note that (5) corresponds to the well known Binet formula for the Fibonacci sequence

Fn =
µn
1 − µn

2

µ1 − µ2

=
1√
5

[(√
5 + 1

2

)n

−
(
−
√
5 + 1

2

)n]
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where µ1 =
√
5+1
2

and µ2 = −
√
5+1
2

are eigenvalues of the matrix

[
1 1
1 0

]
that defines the

Fibonacci sequence

[
Fn+1 Fn

Fn Fn−1

]
=

[
1 1
1 0

] [
Fn Fn−1

Fn−1 Fn−2

]
with F0 = 0 and F1 = 1.

Remark 1.2 The formula (5) works well with two known formulae (see [2] 1.49 and 1.52)
for the Chebyshev polynomials of the first kind T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)−
Tn−1(x) if we put p(x) = x, q(x) = 1, λ1(x) = x+

√
x2 − 1, λ2(x) = x−

√
x2 − 1, P0(x) = 1

and P1(x) = x:

Tn(x) =
1

λ1 − λ2

[(
λn
1 − λn

2

)
x−

(
λn−1
1 − λn−1

2

)]

=
1

λ1 − λ2

[
λn
1

(
x− 1

λ1

)
− λn

2

(
x− 1

λ2

)]

=
1

2
(λn

1 + λn
2 )

=
1

2

(
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

)
, |x| ≥ 1,

and for the Chebyshev polynomials of the second kind U0(x) = 1, U1(x) = 2x, Un+1(x) =
2xUn(x)−Un−1(x) if we put p(x) = x, q(x) = 1, λ1(x) = x+

√
x2 − 1, λ2(x) = x−

√
x2 − 1,

P0(x) = 1 and P1(x) = 2x:

Un(x) =
1

λ1 − λ2

[(
λn
1 − λn

2

)
2x−

(
λn−1
1 − λn−1

2

)]

=
1

λ1 − λ2

[
λn
1

(
2x− 1

λ1

)
− λn

2

(
2x− 1

λ2

)]

=
1

λ1 − λ2

(λn+1
1 − λn+1

2 )

=
1

2
√
x2 − 1

(
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

)
, |x| ≥ 1.

Proceeding as above we get the next two formulae for the Chebyshev polynomials of the
third and the fourth kind Vn, Wn, respectively:

Vn(x) =
1

λ1 − λ2

[(
λn
1 − λn

2

)
(2x− 1)−

(
λn−1
1 − λn−1

2

)]

=
1

λ1 − λ2

[
λn
1

(
2x− 1− 1

λ1

)
− λn

2

(
2x− 1− 1

λ2

)]

=
1

λ1 − λ2

(λn+1
1 − λn+1

2 )− 1

λ1 − λ2

(λn
1 − λn

2 )

= Un(x)− Un−1(x)
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and

Wn(x) =
1

λ1 − λ2

[(
λn
1 − λn

2

)
(2x+ 1)−

(
λn−1
1 − λn−1

2

)]

=
1

λ1 − λ2

[
λn
1

(
2x+ 1− 1

λ1

)
− λn

2

(
2x+ 1− 1

λ2

)]

=
1

λ1 − λ2

(λn+1
1 − λn+1

2 ) +
1

λ1 − λ2

(λn
1 − λn

2 )

= Un(x) + Un−1(x)

Remark 1.3 If deg q = 0, i.e. q is a nonzero constant, one may continue defining polynomials
Pn for negative integers putting initial polynomials P0, P1 arbitrarily and the recurrence
formula Pn−1 = −1

q
Pn+1 +

2p
q
Pn equivalent to the relation Pn+1 = 2pPn(z)− qPn−1. Same as

before we have [
Pn Pn−1

Pn−1 Pn−2

]
=

[
2p −q
1 0

]−1 [
Pn+1 Pn

Pn Pn−1

]

as [
Pn+1 Pn

Pn Pn−1

]
=

[
2p −q
1 0

] [
Pn+1 Pn

Pn Pn−1

]

We obtain [
P0 P−1

P−1 P−2

]
=

[
2p −q
1 0

]−1 [
P1 P0

P0 P−1

]

and [
P−n+1 P−n

P−n P−n−1

]
=

[
2p −q
1 0

]−n [
P1 P0

P0 P−1

]

=
1

λ1 − λ2

[
λ1 λ2

1 1

] [
λ−n
1 0
0 λ−n

2

] [
1 −λ2

−1 λ1

] [
P1 P0

P0 P−1

]

Multiplying the above matrices we get an analogous formula as (5) in Theorem 1.1:

P−n =
1

λ1 − λ2

[(
λ−n
1 − λ−n

2

)
P1 − λ1λ2

(
λ−n−1
1 − λ−n−1

2

)
P0

]

�

Calculating the determinant of the matrix
[
Pn+1 Pn

Pn Pn−1

]
=

1

λ1 − λ2

[
λ1 λ2

1 1

] [
λn−1
1 0
0 λn−1

2

] [
1 −λ2

−1 λ1

] [
P2 P1

P1 P0

]

we get the Cassini type identity for the polynomials Pn, corresponding to the Cassini identity

for the Fibonacci sequence Fn+1Fn−1 − F 2
n = det

[
1 1
1 0

]n
= (−1)n:

(λ1 − λ2)
2 det

[
Pn+1 Pn

Pn Pn−1

]
= det

[
λ1 λ2

1 1

]
det

[
λn−1
1 0
0 λn−1

2

]
det

[
1 −λ2

−1 λ1

]
det

[
P2 P1

P1 P0

]

det

[
Pn+1 Pn

Pn Pn−1

]
= det

[
λn−1
1 0
0 λn−1

2

]
det

[
P2 P1

P1 P0

]
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Since λ1λ2 = q we get the following remark.

Remark 1.4 The Cassini type identity for the polynomials Pn defined by (1) holds:

Pn+1Pn−1 − P 2
n = qn−1(P2P0 − P 2

1 )

which implies the four known formulae for the Chebyshev polynomials of the first, second,
third and fourth kind, respectively:

Tn+1(x)Tn−1(x) −T 2
n(x) = x2 − 1

Un+1(x)Un−1(x) −U2
n(x) = −1

Vn+1(x)Vn−1(x) −V 2
n (x) = −2x− 2

Wn+1(x)Wn−1(x) −W 2
n(x) = 2x− 2.

Theorem 1.5 Let Pn be the sequence of polynomials defined by (1). The quotient Pn+1/Pn

converges uniformly on compact subsets of the set

{z ∈ C :

∣∣∣∣
λ1(z)

λ2(z)

∣∣∣∣ > 1}

to the limit λ1. The limit does not depend on the initial polynomials P0 and P1.

Proof. By (5) the quotient of polynomials Pn+1 and Pn equals

Pn+1

Pn

=

(
λn+1
1 − λn+1

2

)
P1 − λ1λ2

(
λn
1 − λn

2

)
P0(

λn
1 − λn

2

)
P1 − λ1λ2

(
λn−1
1 − λn−1

2

)
P0

=

(
λ1 − λ2(λ2/λ1)

n
)
P1 − λ1λ2

(
1− (λ2/λ1)

n
)
P0(

1− (λ2/λ1)n
)
P1 − λ2

(
1− (λ2/λ1)n−1

)
P0

It converges on compact subesets the set {z ∈ C :

∣∣∣∣λ1(z)
λ2(z)

∣∣∣∣ > 1} uniformly to the limit

λ1P1 − λ1λ2P0

P1 − λ2P0

= λ1

that is independent of P0 and P1. �

2 Continued fractions related to polynomials Pn

Consider the infinite continued fraction

f(z) = 2p(z)−
q(z)

2p(z)−
q(z)

2p(z)− ...
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and the rational functions rk related to f :

r1 = P1/P0

r2 = P2/P1 =
2pP1 − qP0

P1

= 2p− q

P1/P0

r3 = P3/P2 =
2pP2 − qP1

P2

= 2p− q

P2/P1

...... ...... ...

rn+1 = Pn+1/Pn =
2pPn − qPn−1

Pn−1

= 2p− q

Pn/Pn−1

...... ...... ...

It is easy to see that the function f is the limit of the sequence rk.

Theorem 2.1 For arbitrary polynomials p and q such that deg p > deg q > 0, q �= 0, the
continued fraction

f(z) = 2p(z)− q(z)

2p(z)− q(z)
2p(z)−...

is a holomorphic function on the set {z ∈ C :

∣∣∣∣λ1(z)
λ2(z)

∣∣∣∣ > 1} where λ1 and λ2 are eigenvalues

(4) of the matrix (3).

Proof. The statement follows from Theorem 1.5. �

Remark 2.2. In the simple case p(z) = 2αz and q(z) = β2 the set {z ∈ C :
∣∣λ1(z)
λ2(z)

∣∣ > 1}
is the exterior of the interval connecting two points on the complex plane: β

α
and −β

α
. See

Figure 1 for the density plot of the absolute value of the function r60 for p(z) = 2z and

q(z) = i =
(
1+i√

2

)2
with a visible scar connecting the points −1+i√

2
and 1+i√

2
. The following

plots exhibit the density plot of |r60| and more complex scars containing points where the
sequence rk is divergent if p(z) = z2 + i

10
, q(z) = i (Figure 2), p(z) = iz3 + 1

2
, q(z) = −1

3

(Figure 3), p(z) = iz2 − 1
5
z + 1

10
, q(z) = (i− 1

3
)z + i

7
+ 1

5
(Figure 4).

The plots were created using Mathematica Wolfram Research program.
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Figure 1: Density plot of |r60| for p(z) = 2z and q(z) = i.

Figure 2: Density plot of |r60| for p(z) = z2 + i
10
, q(z) = i.
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Figure 3: Density plot of |r60| for p(z) = iz3 + 1
2
, q(z) = −1

3
.

Figure 4: Density plot of |r60| for p(z) = iz2 − 1
5
z + 1

10
, q(z) = (i− 1

3
)z + i

7
+ 1

5
.


