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Introduction

In many applications of the fault detection algorithms in tech-
nological processes, the model-based approach is used. Com-
paring the values of the measured output vector from the real 
process with the simulated values given by the mathematical 
model one can notice the differences. Based on these residuals 
one can concluded about the parameters faults, which has taken 
place in the process [1]. Sometimes the output vector y(t) ϵ Rm 
does not contain enough information about the place where the 
fault occurred. Then for the exact fault isolation and identifica-
tion the information about the full state vector values x(t) ϵ Rn 
is needed, where n>m. In many cases, the linear time invariant 
models (LTI) with lumped parameters may approximate the dy-
namics of the real systems. The high order n of such a model 
is a consequence of the presence of n independent storage ele-
ments (for energy, mass or momentum) in the structure of the 
real system. The process state vector x(t) is very useful also for 
the control algorithms. Stabilization of technological process 
at the working point by the controllers based on the only out-
put signal measurements y(t) is very often not enough. Hence, 
the knowledge of the state vector x(t) is fundamental in many 

tasks of the system analysis and synthesis. Unfortunately, in 
many cases the measurement of the entire state vector x(t) is 
not possible. Therefore, the state should be reconstructed (cal-
culated) based on the mathematical model of the process, given 
by the matrix differential state equation and algebraic equation 
of the output. Such reconstruction is possible if the system is 
state observable. In the authors previous paper [2] the differen-
tial asymptotic state estimators were presented. Their structure 
was based on the differential equation. The main disadvantage 
of the Kalman Filter or Luenberger observer [3], [4] for state 
estimation is the asymptotic convergence of the state estimate 
to the real state value and lack of the information about the es-
timation error value. The power of modern computers makes 
possible application of quite different on-line observation algo-
rithms. They reconstruct the exact value of the state vector, e.g. 
x(t0) at the moment t0, making calculation on time interval [t0, 
t0+T]. The value of T may be fixed in advance. It is also possible 
reconstruction of the current state x(t) for any time t, making 
calculation on the past time interval [t-T, t]. One can see that in 
on-line mode, this observer forms moving observation window 
MWO (with receding horizon) and for the current time t, the cal-
culations are based on finite history of measurement samples of 
the input u and output y signals. This property of the exact state 
information is especially valuable for the system fault detection, 
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stabilization of the state and other critical real-time applications, 
where finite and the known time T of finishing the calculation 
task is very important. If the plant model is known and the input/
output measurements have negligible level of the noise, then the 
exact observers can reconstruct (observe) the state, regardless 
of the lack of knowledge of the initial conditions of the system. 
Under disturbed measurements, the exact observers with the 
minimal norm are particularly useful. The structure of the exact 
state observers are based on integral operations and do not use 
the differential equation solution.

State observability condition in linear 
time invariant systems

We will recall the basic relationships that lead to the definition 
of observability. Let the continuous and linear model of homo-
geneous system be given,

x t A x t x x
y t C x t
( ) ( ), ( )
( ) ( )

            
   
= =
=

0 0

  
(1)

Where x(t) ϵ Rn, u(t) ϵ Rr and y(t) ϵ Rm , for ∀t ≥ 0 . The initial 
state x(0) is unknown x(0)=? The output signal y(t) is measured 
and is known. Because the dimension m < n, the matrix C is rec-
tangular (less equations than unknown variables). Hence based 
on single measurement of output vector y(t1), the state vector 
x(t1) cannot be calculated.

Standard formula for the output y(t) of the above LTI system is

( )     (0) Aty t C e x=     (2)

Multiplying the both sides of (2) by transposition of the suita-
ble matrix one can obtained

' '' ' ( )       (0) A t A t Ate C y t e C C e x=  (3)

Obtained matrix ''    A t Ate C C e  is square, however, still 
singular for any t.

Integration of (3) in interval [0, T] enables calculation of x(0) 
if and only if the square Gram matrix M0 is non-singular and the 
history of the output signal y(t) on this interval is known.
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Nonsingularity of M0 is the well-known necessary and suffi-
cient condition for the system, to be state observable. The equiv-
alent algebraic formula for the state observability has the form
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(6)

From this equivalence, it is easy to see that for continuous 
systems the state observability does not depend on the time ob-
servation T.

The exact state reconstruction in finite 
time interval

The standard model of LTI system is given

( ) ( )

0( ) ( ) ( ),            (0)  
( ) ( )
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(7)

The initial state x(0) is unknown. Functions u(⋅) ∈ [L2[0,T]]r 
and y(⋅) ∈ [L2[0,T]]m.

Reconstruction of the initial condition x(0) of the 
state

We assume that control and output signals are measured on [0, 
T] interval, where T is fixed observation time. Our purpose is to 
determine the state x(0). The output of the system for t ϵ [0, T] is 
given by well-known formula:

( )

0

( ) (0) ( )
t

At A t sy t Ce x C e Bu s ds−= + ∫
 

(8)

For calculation of unknown x(0) one should multiply both side 

of the equation (8) by 
A t,

e C′

( - )

0

' '' ( )     (0)       ( )
t

A t A tA t At A t se C y t e C C e x e C C e B u s ds′ ′ ′= + ∫

Matrix '    A t Ate C C e′  is square however, singular for any t.
Let therefore integrate both side of this equation in [0, T] in-

terval
( - )

0 0 0 0

' ' ' ( )       (0)      ( )
T T T t

A t A t At A t A t se C y t dt e C C e dt x e C C e B u s ds dt
 

′ ′ ′= +  
 

∫ ∫ ∫ ∫

Real square and symmetric matrix M0 is called the Gram Ma-
trix.

0
0

'( )     
T

A t AtM T e C C e dt′= ∫
This Gram matrix depends on observation time M0(T) but in 

sequel we will omit this notation and use M0. If the system is ob-
servable (5), the real Gram matrix M0 is non-singular for any T.
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The observer matrices 1 2( , ), ( , ) G T t G T t also depends 
on observation time T and on current time t but in sequel we will 

omit this notation and use 1 2( ), ( ) G t G t .

Reconstruction of the final condition x(T) of the state

In the similar way one can built the exact state observer of the 
final state x(T), which is more useful for on-line control than 
x(0). The output of the system (7) based on x(T) has the form

( ) ( )( ) ( ) ( )
T

A T t A t s

t

y t Ce x T C e Bu s ds− − −= − ∫
  

(13)

For x(T) calculation one should multiply both side of the equa-

tion (13) by the matrix ( )'A T te C− − ′ and integrate it on [0, T]. 
For observable system, the Gram matrix MT is nonsingular for 
any T.
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∫ ∫
  

(18)

The integral observer is given by two inner products in L2[0, 
T] function spaces and after the first observation window the 
exact value of final state x(T) is reconstructed. Multiplication 
of (13) by the above rectangular matrix ,A te C′ , can be replaced 
by the multiplication of almost „any” other rectangular matrix, 
such that the obtained square matrix M will be non-singular. We 

see here an analogy to the instrumental variable method used 
in identification of discrete systems (which is a modification of 
the least squares method). Hence, it can be assumed that there 
is infinite number of the exact state observers for a given LTI 
process. In that case, one can look for the best observer (from 
some point of view i.e. under some quality index).

The above statement about the exactness in reconstruction of 
the state by the use of integral observer is valid of course only 
under the assumption of perfect input-output measurements 
i.e. without input-output disturbances and if the measurement 
noise is negligible. However, in measurement practice, the noisy 
measurements may occur and then the use of integral observers 
gives the reconstruction error.

1 1 2 2
0 0

1 2 1 1 2 2
0 0 0 0

( ) [ ( ) ( )] ( ) [ ( ) ( )]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T

T T T T

G t y t z t dt G s u s z t ds

G t y t dt G s u s ds G t z t dt G s z s ds x T Tε

+ + + =

= + + + = +

∫ ∫
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A reasonable selected observer will guarantee minimization 
of the state reconstruction error ε. It will be the observer with 
minimal norm in L2[0, T]. To this end function matrices G1(t) 
and G2(t) should be carefully chosen from the class of all admis-
sible observer matrices. The norms of presented above versions 
of the exact observers (11), (12) and (17), (18) are not minimal. 
Hence, the above versions of the exact state observers are not 
optimal in general case and are only special cases, which can 
by derived also from the general theory of the exact and optimal 
state observation. The general theory of optimal and exact state 
observation was formulated and presented by Byrski and Fuksa 
[7], [8].

Remarks on the structure of the observer:
The observer reconstructs the real unknown number (vector) 

xϵRn based on two continuous pieces of functions u and y given 
on finite time interval [0, T]. Hence, the exact state observer 
must have the structure of two linear continuous functionals.

On the other hand from the Riesz Representation Theorem 
[9], it follows that every linear continuous functional in L2[0, T] 
space can be expressed as functions inner product given by the 
integral. Therefore, for SISO system the structure of the observ-
er has to be given by two inner products on [0,T]: one product of 
continuous output function y(·)ϵY and special observation vector 
function G1(·)ϵYn (which must guarantee observability require-
ments), the second product of the input function u(·)ϵU and spe-
cial observation vector function G2(·)ϵUn.

In multidimensional case y(·) ϵ [L2[0,T]]m =Y and u(·) ϵ [L2[0,T]]
r = U and so the functions G are matrices G1(t), G2(t). Function 
elements of these matrices have to have the shape, which will 
minimize the norm of the observer. This norm is defined in the 
space Yn x Un.
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The norm of the observer

For the exact state observer
11 1 11 1

1 1 1 1 2 2 1

1 10 0
1 1 2 2

( ) ( ) ( )
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        = +        
                

∫ ∫
 

        

   
(19)

it will be assumed that the squared norm of the observer (19) 
will be given by (20).
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(20)

Interpretation 1: In this norm the weight factor αi is connect-
ed with the norm of the matrix G1 and represents the level of 
influence of the disturbances existing in all the output signals, 

to accuracy of reconstruction of i-th state variable xi(T). The 
weight factor βi represents the level of influence of the all input 
disturbances, to accuracy of reconstruction of i-th state variable. 
For n=3 it is visible below in the equation:
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    + + + + + +
    
    = + + + + + + + + +
    
    + + + + + +    

T

∫
  

Interpretation 2: The optimal observer with minimal norm 
J guarantees minimal state reconstruction error, because this 
norm estimates the upper value of the possible error, if the dis-
turbances in y and u are bounded and have the unit norm (be-
long to the unit balls) and are the “worst” type disturbances. The 
norm (20) may be treated as the quality index of the observation

Below dependencies between the norm and the observation 
error will be presented.
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0 0

( ) ( ) ( ) ( ) ( )
T T

T G z d G z d= +∫ ∫ε τ τ τ τ τ τ
  

(21)

1 2 1 2

1 2

2
2

1 1 2 2
( , ) ( , ) 0 0

2 2

1 1 2 21 1
0 0

2 2 2
1 2 1 2

max max ( ) ( ) ( ) ( )

                2 max ( ) ( ) max ( ) ( )

                2 2 ( , ) 2 

n

n n n n

T T
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ε

Hence, the assumed form of the squared norm of the observer 
can represents performance index of observation, which should 
be minimized. The optimization task is:

1 2 1 2

2 2
1 2( , ) ( , ) 1 1 1 10

min min ( ( )) ( ( ))
T n m n r

ij ij
i iG G G G i j i j

J g g dα τ β τ τ
= = = =

 
= + 

 
∑ ∑ ∑ ∑∫

 
(22)

The general conditions for the existence of the exact 
state observer

The existence conditions will be derived for final state observer. 
The output formula (13)

( ) ( )( ) ( ) ( )
T

A T t A t s

t

y t Ce x T C e Bu s ds− − −= − ∫ ,

will be substitute to the observer formula (16)

1 2
0 0

( )  ( ) ( )  ( )  ( )
T T

x T G y d G u d= +∫ ∫τ τ τ τ τ τ .

Then one can obtain
- ( - ) ( - )
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τ

τ τ τ τ τ ,

- ( - ) ( - )
1 1 2

0 0 0

( )  ( )   ( )  - ( )   ( )   ( ) ( )
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∫ ∫ ∫ ∫τ τ

τ

τ τ τ τ τ τ τ .

After changing the order of two integrations, the formula (23) 
is obtained.

( ) ( )
1 1 2

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
T T s T

A T A sx T G Ce d x T G Ce B d u s ds G u d− − − 
= ⋅ − + 

 
∫ ∫ ∫ ∫τ ττ τ τ τ τ τ τ

      
(23)

It is easy to see that the general conditions for (23) to be an 
exact state observer are:

The G1 matrix should fulfil the condition

( )
1

0

( )
T

A TG Ce d Iττ τ− − =∫
    

(24)

The G2 matrix should fulfil the condition

- ( - )
2 1

0

( )  ( )   A sG G s C e B ds
τ

ττ = ∫
   

(25)

The formula (24) represents the mathematical constraint for 
the all-possible matrices G1 that can be observation matrices. If 
such a matrix G1 will be chosen, then the matrix G2 must fulfil 
the equation (25). The observer (16) with such a matrices G1 and 
G2 will have the norm (20).

Minimization of the norm (22) (with assumed factors α
i
 > 0, 

β
i
 ≥ 0) on the set of all admissible matrices G1 and G2 gives the 

optimal exact state observer with minimal norm. The matrices 
of this observer of course, must fulfil conditions (24) and (25).

The general formulas for the optimal exact state observer for 
any assumed α

i
 > 0, β

i
 ≥ 0 , have been first time presented in 

1984, in the publications [7], [8].

Two special cases for the exact final state observers

The first special case for the factors αi = 1, βi = 0, may be con-
sidered for the situation when the minimization of the matrix 
G2 norm is not needed. This is when the control signal is known 
(there is no need of its measurement), as well as there is no dis-
turbances z2 in this signal, which could cause an extra state esti-
mation error (21). Hence, the norm (20) has the simplified form
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G
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After substitution of αi = 1, βi = 0, to general optimal observer 
formula [7], on can obtain:
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 0

' '    
T

A T A t At AT
TM e e C C e dt e− −′= ∫

- ( - )-1 ( - ) -1 -
2 0

0 0

' '( )                 A T Ao A t AT A At
T

t t
G t M e C C e d B e M e C C e d e B

   
   ′ ′= =
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(27)

It turned out that these are the same formula like in (16), (17).
The second special case is for αi = 1, βi = 1, and may be useful 

in situation when in both signals, control u and the output y, 
the similar measurement disturbances may occur and both can 
affect the value of state estimation error. Hence, the full norm of 
the observer should be minimized.

2 2 2
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T n m n r

ij ij

i j i j
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1 2( , )
mino

G G
J J=

After substitution of αi = 1, βi = 1, to general optimal observer 
formula [7], on can obtain:

-1
1 11
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2 21
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o
T

o
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τ τ
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11
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T
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∫ ,

where matrices Φ11(t) and Φ21(t) are calculated as submatrices 
of fundamental matrix exp(Wt).

( ) -1 ' -1 '
11 21

0 0

  ( ) ( )    ( ) ( )
T T

T Tx T M C y d M B u dτ τ τ τ τ τ′   = Φ + Φ   ∫ ∫  (30)

Application of the exact state observer in on-line mode
The main formula for the final state observer (16)

1 2
0 0

( ) ( ) ( ) ( ) ( )
T T

x T G y d G u dτ τ τ τ τ τ= +∫ ∫
is valid for every T and for any output y and input u, so also 

for arbitrarily shifted y and u.

1 2
0 0

( ) ( ) ( - ) ( ) ( - )
T T

x t G y t T d G u t T dτ τ τ τ τ τ= + + +∫ ∫

After changing limits of integration (Figure 1) it creates the 
Moving Window Observer – MWO.

1 2( ) ( - ) ( ) ( - ) ( )
t t

t T t T

x t G T t y d G T t u dτ τ τ τ τ τ
− −

= + + +∫ ∫
 

(31)

Figure 1. Moving Window Observer

One can use the optimal integral observer in on-line state 
reconstruction as a moving observation window observer with 
fixed width T of the windows, shifted along time axis. After 
multiplication of functions G1(τ) by y(τ) and G2(τ) by u(τ) meas-
urements on [t-T, t] and after integration of these products on 
[t-T, t], it gives the exact value of the state x(t) for ∀t ≥ T, [10]. 
Hence, one can see that in on-line mode (for the current time t), 
the application of the exact state observers need devices with 
more computation power than for the application of Kalman Fil-
ter estimator. It is also visible, that the exact state reconstruction 
is possible only for t ≥ T.

The important problem for the integral observer is the choice 
of window width T. For different T we have different G1(t), G2(t), 
which can be calculated off-line. If there are no disturbances in 
measurements, the exact state reconstructed value does not de-
pend on the interval T and generally on the norm of the observer. 
Hence, from computation effort point of view the window width 
T should be as small as possible (it gives also the reduction of 
the delay in the exact reconstruction x(T) after the first window). 
On the other hand, the main statement is that the norm of the ob-
server depends on T. It was turn out that with decreasing T, the 
observer’s norm increases and when T tends to zero the norm of 
observer tends to infinity. In disturbed measurements case, the 
observer should have the smaller norm and hence be calculated 
for the bigger interval T. One can determine even the minimum 
value of T to guarantee admissible state reconstruction error. 
For different levels of disturbances, one can prepare also, the 
set of the different observers for different values of observation 
times Ti and use adaptive switching.

Analytical example for the integral MWO

Let the LTI second order SISO system be given, as in previous 
examples.
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The integral state observer has the form of two matrices (in 
this case vectors) G1 and G2.
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o o
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τ ττ τ τ τ
τ τ

    
= +    

     
∫ ∫

 
(33)

For this system based on formula (16), (17) or (27) the optimal 
observer matrices for the first case (α=1, β=0) are given by (34).

2

1 3

31( )
6 3

o T t T
G t

T t T
 −

=  −  .

2 2 3

2 3 2 3

1( )
3 2
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 −
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(34)

2 2
1 2 11 12 3

0

1 3( , ) ( ) [ ( )] [ ( )] ,
T

G G T G t G t dt
T T

 =⋅ + =⋅ + ∫
 

(35)

This norm as the function of T is visible on the Figure 2.

Figure 2. The norm (35) of the observer as the function of T

Based on formula (29) one can find the optimal observer ma-
trices for the second case (α=1, β=1).
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′ Φ Φ  
= Φ = =   ′ ′ Φ Φ−   
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21
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t t t t t t

t
t t t t t t

⋅ + ⋅ ⋅ ⋅ 
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The final formula for the observer optimal matrices (29)

-1
1
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(36)

where the inversion of Gram matrix is equal to

-1
2 2

sinh cos  -  cosh sin , 2 sinh sin1
2 sinh sin , 2 (sinh cos   cosh sin )2sinh  -  2 sinT

T T T T T T
M

T T T T T TT T
⋅ ⋅ ⋅ ⋅ 

=  − ⋅ ⋅ ⋅ ⋅ + ⋅ 

and the observer’s norm is given by (37)

1 1 2 2

3sinh 2 sin 2( , )
4(sinh sin )

o o T TG G
T T

+=
− , 1 2( , ) ( ) 1.5.G G ∞ =  (37)

In Figure 3, one can see the dependence of the norm of esti-
mation error on time observation T. This error is estimated by 
the norm of the observer 1 2( ) 2 ( , ) ( )T G G Tε ≤ ⋅ . The error 
is presented for two different state observers (34) and (36). The 
lowest graph is for the simplified case 1: αi = 1, βi = 0 , given 
by the formula (27), (34). A bit higher located graph represents 
the full norm for the case 2: αi = 1, βi =1, formula (37). And the 
highest located graph represents the estimation of the worst er-
ror for the case 1, when despite of the expected noise absence in 
the control signal, such a worst disturbances from the unite ball 
in u(t) will appear. However, in this case the matrix G2(t) is not 
optimal and so contributes to significant errors. This unexpected 
error is presented by third graph and the formula

2 2 2 2
1 2 11 12 21 220

2 ( , ) 2 [ ( )] [ ( )] [ ( )] [ ( )]
T

G G G t G t G t G t dtε  ≤ ⋅ = ⋅ + + + = ∫

6 4 2 32 ( 39 105 315) / (105 )T T T T= ⋅ + + +   (38)

It seems that for the system (32) and the guaranteed case 1 
(αi = 1, βi = 0) the use of the observer (34) with the best ob-
servation time Tϵ[4 – 6] gives and the smallest error. For the 
case 1 and possibility of control signal noise occurrence the best 
observation time is Tϵ[2 – 3]. For the case 2 (αi = 1, βi =1) the 
most reasonable is the use of the observer (36) with observation 
time Tϵ[2 – 3].

Figure 3. The estimation error given by the different observers as the 
function of T.
Blue curve (lowest) for case 1 (35), red curve (higher) for case 2 (37),
black curve (highest) for the worst error estimation in case 1 (38)

In the Figure 4. the shape of the optimal observer matrices G1 
and G2 (29) for T=2 are visible. In the Figures 5, 6, 7, 8, 9, 10 one 
can see the application of the observer (29) and the superiority of 
the MWO (31) over the asymptotic observers in on-line observa-
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tion of the system (32) as well as in its stabilization by the use of 
Linear Quadratic Regulator (LQR).

Figure 4. The optimal observer matrices G1 and G2 for T=2.0 from (29)

 

Figure 5. Reconstruction of the state variables x1, x2 without measurement 
noise in u(t)=1(t) (upper plots) and with measurement noise (lower plots). Left 
Fig. for MWO T=0.5, right Fig. for MWO, T=1.0

Figure 6. Estimation of the state variables (32) with the measurement noise 
in control by the use of Kalman Filter



Science, Technology and Innovation Original Research30

Sci, Tech. Innov 2019; 5 (2), 23-33 www.stijournal.pl

 
Figure 7. Stabilization of the state in system (32) from nonzero initial 
conditions with the use of LQR and direct measurement of the state x1(t) and 
x2(t) (without the observer)

Figure 8. Stabilization of system (32) with LQR and reconstructed state x1(t) 
and x2(t) by the use of MWO observer T=0.1

 

 
Figure 9. State stabilization with LQR and KF MWO with measurement 
noise

Figure 10. State stabilization with z LQR and MWO
with T=0.5, with measurement noise

Discrete version of the exact state observers

 
Now will be derived the formulas for the discrete version of the 
observer for the exact state reconstruction. The discretization 
time sample is ∆. Let us assume the SISO system and the second 
case of the exact state observer it means with coefficients α=β=I.

The vector samples of y(t) and u(t) consist of N+1 measure-
ments on interval [0,T]. Hence, the output, input and the state 
vector spaces will be Y=RN+1, U=RN+1, X=Rn, respectively. 

The final state x(N) is unknown and should be reconstructed. 
The system equation is given by:

1 2y H x(N ) H u= ∆ +

0 1 o

1 2
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y x (N ) u
H H
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∆     
     = +     
     ∆     

  

  

(39)

In i-th sample of discretization i∆ the equation (39) has the 
form
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(40)

The forms of matrices H1 and H2
 follow from the above equa-

tion.
The form of the matrix H2 one can simplified by the use of the 

new variable ∆−τ= js .
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∆ = − = − + ∆       

∑ ∑∫ ∫

Assuming existence of the zero order hold ZOH (convention-
al digital-to-analog converter - DAC) which holds the value of 
each control signal sample for one sample interval u(j∆)=const, 
one can calculate the integral in H2 and finally obtain
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 − 
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(41)

The discrete state observer is given by two matrices 
G1[n×(N+1)], G2[n×(N+1)]:

1 2( )x N G y G u∆ = +     (42)
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The norm of the observer is given by the sum of the inner 
products:

( )1 2 1 1 2 2
1 1

1, , ,
n n

T T i i i i

Y U
i i

G G g g g g
= =

 = + ∆  
∑ ∑

 
(43)

The forms of the optimal observer matrices, which minimizes 
the norm (43) one can numerically find from the below formulas 
(44), [7], [8], [17]:

( ) 11 1
1 1 1 1 2 1 2,o T T o oG H F H H F G G H

−− −= = −  (44)

where ( )2 2
TF I H H= + .

The vector of unknown final state x(NΔ) in given interval one 
can find from the formula. 

1 0 o

1 2

n N N

x (N ) y u
G G

x (N ) y u∆ ∆

∆     
     = +     
     ∆     

  

  

(45)

These matrices G1 and G2 can be also use in on-line moving 
window discrete observer.

Results and Discussion 

All the above discussion on the integral exact state observers 
proved their superiority over the asymptotic estimators. Three 
useful remarks about the application of the adaptive exact state 
observers may be done.
1.  Taking into account two facts that the basic observation prob-

lem is the reconstruction of the vector state with minimal 
error as well as that the noises are always acting in measure-
ments, undoubtedly, the observer with a minimal norm should 
be designed. The problem strictly related to this, is the proper 
choice of the observation time T. If the norm of disturbances 
are small and the noise may be neglected, observation time 
T may be short because the norm of the observer does not 
matter. If the norm of disturbances is significant, the time T 
should be long enough that the observer norm would be not to 
big. If the norm of disturbances varies in time, the adaptive 
version of the on-line observers may be proposed. Current 
identification of the disturbances and their norm enables cal-
culation of minimum window’s width Tmin, which will guar-
antee admissible reconstruction error. The method of distur-
bance identification was given in [11].

2.  There are also possible the other adaptive exact state recon-
struction strategies. In advance (off-line) one can prepare a 
few observer’s pairs (G1i, G2i) (the bank of observers with dif-
ferent norms) for different windows width Ti <Ti+1 and start 
the state reconstruction process with the use of the shortest 
window. If however, the norm of the noise is significant, then 
for state observation the observers should be consecutively 

exchanged, and have longer and longer windows (the observer 
switching structure).

3.  The third adaptive strategy is based on the cooperation of 
different observers. If the controlled object is very fast (e.g. 
electric drive control) and computation power of used control 
devices is not enough, the integral MWO can cooperate with 
KF algorithm [12]. For current state estimation, the Kalman 
Filter can be used and the exact state observer with very short 
window runs simultaneously in parallel. After the first win-
dow T1, when MWO reconstructs the exact state x(T1), it pro-
vides this value 1 1( ) ( )x T x T=  to KF. Then the KF estimation 
is restarted. The LQR stabilizing regulator works all the time 
based on KF state estimation. The MWO exact observer is 
switched-on only occasionally when the LQR regulator will 
detect large increase in the control error (due to possible dis-
turbances) and hence, the state estimate correction probably 
will be needed.

Conclusions 

In this paper, the theory of the optimal asymptotic state esti-
mation and the exact reconstruction of the state vector in finite 
time interval was recalled and compared. Numerical examples 
proved that the state estimation and the state stabilization by the 
use of exact observers are much efficient than the use of asymp-
totic estimators. 

The asymptotic behavior of the convergence of the state es-
timate given by KF is due to its structure based on linear dif-
ferential equation. The power of modern computers makes the 
application of the other on-line optimal observation algorithms 
possible. They originate directly from the definition of the ex-
act observability and guarantee the exact state reconstruction of 
LTI system in finite time. The general theory of the determin-
istic approach to optimal exact state observation, for which the 
relations were formulated in Hilbert function spaces, was in [7], 
[8]. The structure of the observer is given by two inner products 
(integrals) of the output and input measurements and special 
observation functions G1(t), G2(t) on interval [0,T]. The optimal 
functions G(t) were chosen in such a way that they minimized 
the norm of the observer. The observer with minimal norm 
guarantees the minimal state reconstruction error for the worst 
disturbances taken from the unit balls in the measurements of 
both y∈Y and u∈U. The state observer can be used in on-line 
mode as MWO. The choice of the width T of the observation 
window is an important problem for the integral observer. If 
there are no disturbances in measurements, the exactness of 
state reconstruction does not depend on the norm of the observer 
and so generally on T. Hence, from computation effort point of 
view and for decreasing the start delay of the exact reconstruc-
tion, the width T should be as small as possible. On the other 
hand, if in the measurements the disturbances will occur, the 
estimation error will depend on the norm of the observer. The 
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main statement is that the norm of the observer depends on T. 
The norm increases with decreasing T. When T tends to zero the 
norm tends to infinity. Hence, in practice for disturbed measure-
ments of y and u the reconstruction error will be less for bigger 
T. Therefore, the minimum value of T, which will guarantee of 
admissible state reconstruction error, can be calculated. In work 
[13] one can find an extra generalization of the state exact ob-
servation and the new formula for optimal observation matrices 
G1, G2 for the case when measurement disturbances exist and 
belongs to ellipsoids (and not to unit balls). In this work also, 
the differential version of the exact state observer, equivalent to 
integral MWO window state observer was derived, however it 
is a differential equation with lumped and distributed delay. The 
authors have elaborated also the other versions of the exact state 
observers and their applications and published the results of 
their research. One can find e.g. in [14] – problem of stabilization 
of the state in distillation column, in [15] – the state observation 
in distributed parameter system given by the heat equation, in 
[16] and [17] – the discrete version of the exact observers, and in 
[1] and [18] – the exact state observer working in the structure of 
double window for the fault detection. 

The idea of using the exact state observers for various con-
trol tasks has also been noticed by other authors. Quoting vari-
ous works chronologically, one can indicate: the application to 
nonlinear systems [19], to systems with delay [20], for the fault 
detection [21], [22], [23], to exact observation by differential ob-
server [24], for time-derivative estimation [25], and others [26], 
[27].

Assuming, the most important properties of the integral state 
observers are: 

• exact state observation for continuous linear systems,
• deterministic statement of the optimal observation prob-

lem in L2 spaces, 
• integral description of the on-line observer,
• high filtering properties of measuring noise due to the 

integral structure of the observer,
• fixed finite observation time interval T (of any length),
• independence on the state initial conditions x(0),
• off-line calculation of optimal matrices G1 and G2,
• on-line application as MWO,
• optimality of the observer from the point of view of noisy 

measurements in both u(t) and y(t) signals,
• possibility of calculation the minimal norm observer,
• the closed-loop system with integral observer and stat-

ic LQ controller has the same eigenvalues as the system 
with direct measurement of the state and LQ controller 
only i.e. that the order n of the closed system with the 
MWO + LQR is the same as without the observer. The 
closed-loop feedback system with Kalman Filter has the 
order equal to 2n [7].

• The theory of the exact state observers can be formulated 
in Hilbert spaces [16] and applied to any linear system 

like system with distributed parameters or time delay if 
only the finite dimension state vector or any parameter 
xϵRn should be reconstructed.
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