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Introduction 

Household heating optimization needs mathematical models 
to make possible fast simulation of such processes as heat ex-
change, air mixing and thermal conduction across the walls. A 
specific feature of the processes to be considered in this task 
is large diversification of their dynamics. There are very fast 
cheat exchange phenomena in cheating devices (gas boilers and 
radiators), where transient response is of seconds, a bit slower air 
mixing with time constants of minutes, and cheat transfer across 
the walls which is of fast initial response (more than 50% of final 
level in several seconds) but going very slowly (in tens of hours) 
to its steady state. 

Typical calculations of buildings thermal properties are in 
general very simplified and they are limited to steady states. 
Appropriate recommendations and data are widely available in 
literature, e.g. [1, 2, 3]. In turn, to the process dynamics calcu-
lations one may exploit typical discretized state space models 
[4], producing time responses of temperature and heat streams 
at any point. However, elaboration of effective algorithms (e.g. 
modern MPC controllers [4, 5]) to minimise the energy con-
sumption needs more accurate analysis of the process dynamics. 
In particular, to avoid excessive simulation errors the state space 
model accuracy should be evaluated, depending on the space 
and time discretization parameters, especially cheat losses at 
the initial transient response interval. For homogeneous walls it 
may be done by using analytical solutions of the thermal diffu-

sion process. But for typical multilayer building partitions there 
are no so simple formulae, hence a semi-analytical approach is 
proposed in the paper. 

To this aim numerical properties of the analytical formulae 
are taken under considerations, and a semi-analytical model of 
the thermal diffusion process is elaborated, which makes possi-
ble calculation for multilayer (heterogeneous) walls more pre-
cisely than with the state-space model. In effect a convolution 
model is proposed to simulate the household heating process as 
an alternative to the state-space model. Recommendations for 
the time and space discretization and for reduction of calculation 
time are given. 

Mathematical modeling of household 
heating processes

Let us take a household heating system in a typical single-family 
house consisting of a gas boiler heating the circulating water and 
radiators placed in particular rooms. The heat transfer is by the 
conduction from hot gases to water in the boiler and from hot 
water to air in radiators, the convection outside of the building 
with air due to natural or forced ventilation, mixing of air inside 
the rooms, and conduction by different building partitions (in 
particular heat losses across the external walls). Rules and ap-
propriate formulae for heat demand evaluation are specified by 
European and polish standards (e.g. [2, 3]), with respect to com-
fort needs, climate conditions and building properties, which 
affect averaged heat losses and so – heat consumption depend-
ing mainly on the surface of building partition and ventilation 
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intensity. Distribution of heat losses is roughly characterized in 
Table 1. 

Application of typical automated heating control systems 
make possible to reduce the energy consumption by 5–15% (in 
older buildings better isolation of external wall may yield ener-
gy savings by 10–25%) [1]. However, implementation of modern 
control algorithms, especially predictive controllers [4, 5], em-
ploying precisely specified time profiles of required and external 
temperature to optimize in real time the heat production, make 
possible reach noticeably higher energy savings. Nevertheless 
it needs elaboration of mathematical models enabling for fast 
simulation of the heat transfer dynamics. 

The heat convection dynamics in a room space (including 
heat losses due to ventilation) may be described by the mixing 
dynamics formula [4]. When assuming an ideal mixing of air 
and negligeable changes of its density ra≈1.12 kg/m3, the energy 
balance in a room of volume Va may be written as: 

where Ta denotes averaged temperature in the room, ca – spe-
cific heat capacity of air at constant pressure (ca≈1 kJ/kg/K); Fa – 
ventilation air flow (Fa ≈ 25 m3/h, Famin=17.5 m3/h [2]), Te.- tem-
perature of air going into the room, qsi – the i-th stream of heat 
losses due to conduction across the i-th building partition [kWh] 
and qr stands for the heat inflow from radiators [kWh]. Parame-
ters for the model (1) are widely available in literature (eq. [1]). 

The transient response of the process (1) disappears in min-
utes (Va/Fa≈120 min, but first reaction to qr and qi changes is 
much faster). The ideal mixing assumption is rather serious sim-
plification, but it is necessary to avoid tremendously complicat-
ed calculations of fluid dynamics [4]. Thus the errors due to this 
simplification are a reference measure for demanded accuracy 
of remaining processes modeling. 

The heat conduction across the radiator and boiler walls (pro-
ducing qr) is very fast. Hence a transient response of this process 
may me omitted, and the steady state model of this process (in-
volving water transportation lags) [4] may be used in simula-
tions. It has the following form: 

where Twh and Twc denote hot and cold water temperature, cw 
and hwh – specific heat capacity [kJ/kg/K] and dynamic viscosity 
coefficient [kg/m/h] of hot water, Fw – mass flow of water [kg/h] 
(forced by a difference between hot and cold water density), CFr 
is a geometric constant of pipes and Kr stands for a material and 
geometric constant of radiator. 

The model (2) is applicable while Fw> Fwmin, i.e. while resident 
time of water in the heat exchanger is no longer than a couple 
of seconds. In another case a water heating dynamics formula 
should be employed. 

The same formulae (2) may be used to describe the water 
heating process in a gas boiler, with Twh replaced by Twc and 
vice-versa, and an average flame temperature Tf replacing Ta. 
In the heating control system the gas boiler is employed as an 
actuating device aimed at producing the hot water of a tempera-
ture Twh close to its reference value calculated by the supervisory 
controller optimizing the heat consumption with a presumed 
room temperature time profile being held. 

The key issue (focused in this paper) is an appropriate model-
ling of heat losses streams qi [kWh] in eq.(1) The basic formula 
describing the heat losses due to heat conduction across a solid 
wall is the 1D Fourier’s law:

where Ts(t,0) denotes the wall surface temperature, li is the 
thermal conductivity coefficient of the wall material, [W/(m·K)], 
qSi is heat losses stream for 1m2 of wall [kWh/m2]. 

However, to determine the heat stream it is necessary to ex-
ploit the full 1D model of the thermal diffusion dynamics, which 
has the form: 

The model (4) may be used to simulation the thermal conduc-
tivity process in approprietely discretised space of the wall (usu-
ally one takes a constant increment Dx of the space coordinate 
x), in a series of fixed time instants tn with a constant sampling 
interval Dt, starting with any initial conditions Tsi(0)=Ts(0,i∙Dx), 
with any boundary conditions Ts(t, 0) and Ts(t, L). The time and 
space discretization leads to the lumped parameter state-space 
model consisting of equations expressing the dymamic energy 
balace in i-th layer of the wall (i=1,… M, M=L/Dx), in which 
the temperature gradient is calculated with the approximating 
formula: 

Table 1. Heat losses distribution in a typical single-family house (source [1]) 

Ventilation Windows and doors External walls Floors Ceilings and roof

30-40 % 10-15% 20-30% 5-10% 10-25%

 (1)

 (3)

 (4)

 (2)
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where ci denotes a specific heat capacity of the wall material 
in i-th layer [J/(kg·K)] and ρi is its density [kg/m³]. 

It is noteworthy that in the formula (5) different values of λ, ρ 
and cw for each layer are admitted. Let us denote: 

The equation (5) may be transformed to the form producing 
directly Ts(n+1,i): 

It should be noticed that according to general rules of mod-
eling of causal processes dynamics [5], in the formula (6) one 
assumes constant values of temperatures during the time inter-
val Dt in all the layers, and the increment DTs(n, i) concerns the 
value averaged over a neighborhood Dx /2 of the point xi =i∙Dx. It 
points that the heat stream qi in eq.(3), playing the key role in the 
simulation model in eq.(1), may be highly sensitive to values Dx 
and Dt taken arbitrarily. This sensitivity may be reduced a bit by 
using the following (more accurate) formulae: 

where:      

A general rule of thumb for assigning the value for Dt for sim-
ulations is [4], that the following relations should be held: 

In order to evaluate a precision of calculations based on eq.(8) 
simulations of the heat transfer across a typical building partion 
were performed. First, a „homogeneous” brick wall was taken 
under considerations of 0.45 m thickness, then a more realis-
tic partition consisting of two layers: 0.3 m of brick and 0.15 m 
of typical polystyrene insulating layer. Thermal parameters of 
such a wall (taken from [6]) are presented in Table 2. 

Selected sequence of temperature profiles across the partition 
after step-wise change of left border temperature from 15oC to 
20oC are shown in Fig.1, assuming the homogeneous brick wall 

Table 2. Thermal parameters of typical building partitions and resultant thermal diffusion coefficients (source: [6], author’s own 
recalculations)

Figure 1. Selected temperature profiles across the homogeneous brick wall 
(left subfigure) and the two-layer wall: brick 0.3m and polystyrene 0.15 m 
(right subfigure) calculated with eq.(8) for different Dt and Dx. 

Material of 
partition

Thermal 
conductivity 
[kWh/(m K)

li

Density [kg/
m3] rm

Specific heat capacity [kJ/
(kg K)]

cm

Thermal diffusion 
coefficient [m2/h] 

Dm

Partition size [m] Lm

Brick layer 2.88 1800 0.88 1.8182*10-3 0.45 0.30

Isolation layer 
(polystyrene)

0.126 40 1.46 2.1575*10-3 0.15

 (5)

 (6)

 (7)

 (8)

 (9)
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(left subfigure) and the two layer wall: brick 0.3m and polysty-
rene 0.15m (right subfigure). Calculation time was very short – 
ranging from 0.14s. for 43200 time samples and 15 layers to 4s. 
for 432000 time points and 150 layers. It may be seen that there 
are no significant differences depending on Dt and Dx. Time 
profiles of the temperature at selected points xi (close to x=0.3m) 
are shown in Fig.2 (calculated with Dx=0.003m, Dt=10s and 1s.). 
Initial sections of the transient responses are exposed. 

Very long transient response (ca. 100h) is specific for this 
process. Differences in transient time and initial lags (visible 
in Fig.2) for Dt=10s (upper subfigures) and Dt=1s (lower sub-
figures) point that proper selection of Dt is of importance, and 
Dt=10s is too large. However, the role of proper selection of Dt 
and Dx becomes evident when consider the heat losses stream 
qi, which is crucial in the model (1). Let qT (t, 0)=qi/S denotes the 
heat stream [kWh/m2] calculated numerically by using eq.(8): 

Results of calculations of qT with different Dt and Dx are pre-
sented in Fig. 3. 

Huge differences between values found with Dt=10s and 1s, 
as well as with Dx=30mm and 3mm are clearly seen in large 
time interval (up to 50h), but especially at very initial section of 
transient response (see right subfigure). It should be noticed that 
the formulae (8) yield values of qT averaged over Dt, hence qT (0, 
0)≡0 is assumed, and differences visible for the same Dx might 
be acceptable in more approximate calculations. Nevertheless, 
the effect of Dx is due to the temperature gradient averaging, 
so it should be eliminated as a typical artefact, because in eq.(1) 
estimation of the outgoing heat stream is needed. The question 
what value for Dx should be taken to reach demanded accuracy 
of calculations may be answered by analysis of analytical solu-
tions of eqs. (3, 4). It is taken under consideration in the next 
section. 
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Figure 2. Time profiles of temperature at selected points calculated with 
eq.(8): left subfigures – homogeneous brick wall; right subfigures – the two-
layer wall: brick 0.3m and polystyrene 0.15m. 

Figure 3. Time profiles of heat losses stream (eq.10) calculated for the 
homogeneous wall with different Dt and Dx, presented in full time interval 
in hours (left subfigures) and at initial time section of transient response in 
seconds (right subfigures, points show 10s intervals)

 (10)

0 50 100

100

200

300

400

q T(t
,0

)

∆t=10.0s. ∆x=30.00mm t[h]

0 50 100

1000

2000

3000

q T(t
,0

)

∆t=10.0s. ∆x=3.00mm t[h]

0 50 100

100

200

300

400

q T(t
,0

)

∆t=1.0s. ∆x=30.00mm t[h]
0 50 100

1000

2000

3000

4000

q T(t
,0

)

∆t=1.0s. ∆x=3.00mm t[h]

0 50 100
0

200

400

q T(t
,0

)

∆t=10.0s. ∆x=30.00mm t[s]
0 50 100

0

1000

2000

3000

q T(t
,0

)

∆t=10.0s. ∆x=3.00mm t[s]

0 50 100
0

200

400

q T(t
,0

)

∆t=1.0s. ∆x=30.00mm t[s]
0 50 100

0

2000

4000
q T(t

,0
)

∆t=1.0s. ∆x=3.00mm t[s]



J. T. Duda   |   Practical aspects of heat conduction simulation in household heating optimization tasks 13

Sci, Tech. Innov 2019; 5 (2), 9-22www.stijournal.pl

Formal and numerical properties of 
analytical solutions of the thermal 
conductivity process 

For the diffusion process of constant diffusion coefficient D, 
with some special initial and boundary conditions, there are 
analytical solutions of equations (4), (5). In particular, when at 
t=0 (initial condition) the temperature across the wall is zero 
T(0,x)=0, x (L denotes the wall thickness), and temperature TL 
at the left bound of the wall TL=T(t, 0)=1, t≥0, while at the right 
bound TR=T(t, L)=0, t≥0 (boundary conditions for thermal con-
ductivity) [6, 7], the analytical solution of eqs (4), (5) for the unit 
step change of TL , i.e. the step response denoted as hTL(x, t) is: 

By virtue of eq.(2) linearity, the formula (11) may be viewed 
as the universal model of the process. It results from a math-
ematical trick. The first term at the right hand side writes the 
final steady state profile, the first term in the series is a special 
function expressed in the form of Fourier series [7]: 

which is used to compensate the final profile at t=0 except for 
the boundary value. Then, it is dumped to zero with  by 
the exponential term to produce the solution. As the matter of 
fact it is composed of two periodical functions of 2L period [9]: 

Plots of the above functions vs. x reached with a finite itera-
tion number (i<nmax) are shown in Fig.4. 

As it is seen in Fig.4 the sums in eqs.(11–13) are rather quickly 
converging, even at t=0 and x=0. In turn, properties of the func-
tions h1(t, x), h2(t, x) based on the series f1 and f2 completed with 
the exponential time factors (like in eq.11), as well as of the sum 
h1+h2, viewed versus x coordinate in the range -L<x<L, (L=0.45) 
are shown in Fig.5 for selected time instants the same as in Fig.1. 
(calculation were carried-out for the brick wall of L=0.45 – see 
Table 1 for parameters). 

It may be seen in the lower-right subfigure that the function 
h2(t, x) describes the physical heat conduction process but only 
for (outside this interval it is of no physical meaning, although it 
remains a formal solution of eq.(4) for any x). 

By using the same trick related to the unit step change of the 
right hand side temperature TR one arrives at the step response 
formula hTR(t, x) for the second input TR of the process: 

A simultaneous unit step-wise change of both TL;and TR gives 
the typical thermal diffusion process, which may be described 
by using only h1(t, x). It leads to the following diffusion step-re-
sponse formula hTH(t, x) (not exploited in this paper): 

The values of the functions hTL(t, x), hTR(t, x) and hTH(t, x) may 
be calculated individually for any x and t irrespective their 
neighbourhood, i.e with no effect of Dx and Dt. The series in 
eqs.(11, 15, 16) converges rather quickly (it is enough to take 
i<300), so calculation of one time profile of e.g. hTL at a given x 
with Dt=1s up to t=120h takes a couple of seconds (a bit more 
then solving of the full set of eqs.(8)). Space profiles of hTL(t, x), 

Figure 4. Analytical functions f1(x) – eq.(12), f2(x) – eq.(13) and f1(x)+f2(x) – eq.(11) calculated with finite num-
ber of iterations i<nnax (Dx=3mm)
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hTR(t, x) and hTH(t, x) for the selected time instants are presented 
in Figure 6.  

Due to the linearity of eqs (4) and (5) one may exploit the 
formulae (11, 15) as the universal step response model of the 
heat transfer process at any point x, excited by changes of the 
left TL(t) and right TR(t) temperature. Let us assume an initial 
steady-state conditions (for t=0)- 

The step response to a simultaneous step-wise change in the 
boundary conditions for t≥0: 
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Figure 5. Space coordinate x profiles of analytical functions h1(t, x), h2(t, x) and hTL(t, x) calculated at selected time instants (the 
same as in Fig.1) with finite number of iterations i<1000 (Dx=3mm, brick wall)

Figure 6. Space coordinate x profiles of analytical functions hTL(t, x), hTR(t, x) and hTH(t, x) calculated at selected time instants (the 
same as in Fig.1) with finite number of iterations i<1000 (Dx=3mm, brick wall)
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can be expressed in the form following (exploiting additivity 
of excitation effects in linear transforms): 

The model (19) may be employed in any simulation procedure 
by calculating its convolution with any time profile of TL(0, t). 
For causal systems it may be expressed by the general convolu-
tion formula: 

where uk() stands for a k-th input time profile, gk(t) denotes 
the impulse-response of the considered process attributed to 
the k-th input (for causal systems . It may be also 
written in the alternative form, involving the step-response 
h(τ) , which for  is: 

Having the formulae for hT(t, x) we may easily derive the for-
mulae for cheat stream qs(t, x) according to the Fourier’s law (3). 
The formula for the step response of heat flow hqTL(t, x) at any 
x-point and time t, to step change in temperature DTL=1 has the 
following form: 

In the same way one may express the step response hqTR(tn, x) 
to unit step change DTR=1: 

In household heating calculations the most important issue is 
appropriately accurate modeling of the heat stream q(t, 0) out-
going a heated room (see eq.1). To this aim the one may employ 
directly the eq.(22). However the series in eq.(22) converges 
very slowly for x>0, and it does not converge at x=0 and t=0. 
In particular, for t=0 the formula (22) represents the Dirac delta 
function δ(0) in its Fourier series form [8, 9]:

Hence one may consider calculation of q(t, 0) by using the 
approximating formula, like in eq. (10): 

which converges much better (see Fig. 6). 
In order to help resolving of the above dilemma one may 

examine effects of using of eq. (22) and eq. (25) with different 
number if iterations and different Dx. Results of such calcula-
tions are compared in Fig. 7. When viewing this figure one can 
see very strong effect of Dx to the formula (24) and its noticeable 
influence on eq. (22). Notice that initial transients response cal-
culated with Dx=4.5mm is quite different when using eq. (22) 
and eq. (25). It remains significant for Dx=0.045mm (compare 
upper and lower subfigures), hence its value closer to 0.00045 
seems to be adequate for eq. (25). The approximating formu-
la (25) is also noticeably sensitive to the number of iteration, 
but tis effect is much stronger for the formula (22). Notice that 
calculations of hqTL(0,Dx) do not fit the formula (24) until very 
large Imax is taken (Imax=3 600 000 was applied). The initial val-
ue in the central lower subfigure (Imax=3 600, Dx=0.0045mm) is 
ca 3.68104 instead of its actual value i.e. 0 (see eq.24), which is 
reachable with much larger Imax (see bold point at x=0.0045mm). 
It should be noticed that, in fact, the values for x=0 counts 
simply the iterations (the formula (22) does not converge), i.e. 

. It yields ca. 4.6 104 and 4.6 107, respec-
tively (see values in lower left-right and right-right subfigures), 
that (according to eq. 24) may be viewed as averaged values over 
δx=6.25 10–2 mm and δx=6.25 10–5 mm. 

Nevertheless as the matter of fact, in practical simulations we 
need formulae for the heat streams averaged over a time interval 
Dt. Such a formula may be derived by integration of eq. (22), i.e.: 

It may be used directly to calculate q(t, 0) with a lower Imax, 
as the series in eq. (26) converges much better than in eq.(22) 
[9]). One may also employ the approximating formula (25) with 
hTL() averaged in the same way. Results of such calculations are 
compared in Figure 8.  

It may be seen that this time the sensitivity of the both for-
mulae to Dx is much weaker, providing that Dx<1mm. Results 
obtained with approximating formula and eq. (26) are similar 
(compare corresponding subfigures in Fig. 7 and 8). It should be 
noticed that calculation with eq. (26) are less time consuming 
than approximating one. 

In Figure 9. the step response of the heat losses stream cal-
culated in the discretized state-space – eqs. (8) (recursive mod-
el) is confronted with that produced by the analytical formula 
(26). A relatively small value Imax=2000 was taken and Dt=1s 
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Imax=3 600 000 (right subfigures). Results obtained for i=150 are also shown as point-lines, and for i=300 as dotted lines. 

Figure 8. Step response of heat losses stream qq(t, 0), at very initial time section, averaged over the time sampling interval Dt=1s, calculated for the brick wall 
with approximating equation (25) (upper subfigures) and the analytical formula (26) (lower subfigures) reached with the number of iterations Imax=3600 (left 
subfigures) and Imax=3 600 000 (right subfigures). Results obtained for i=150 are also shown as point-lines, and for i=300 – dotted lines
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the same as in Fig.8. The recursive model was applied with Dx-
=0.45mm and Dx=0.225mm. The plots shown in left and central 
subfigures reveal significant modelling errors being an effect of 
too large Dt value (Dt/Dx ratio is too large, so smaller values of 
Dx are unacceptable when Dt=1s – see also right subfigures in 
Fig. 3). 

 The above picture gives evidence for advantages of the an-
alytical formula (26), when compared to the recursive model. 
Thus, for homogeneous partitions it may be recommended as 
the appropriate formula enabling for calculation the heat losses 
step response, to be stored and used as the basis of convolution 
model (21) in simulation procedures. 

So far as the diffusion coefficient D and the thermal conduc-
tivity coefficient λ are constant across the wall, the equations 
(11, 13, 26) enable us to calculate the temperature T and cheat 
flow q at any point x and at any time tn with no information on 
their values at neighboring sites x- ∂x, x+ ∂x. 

Let as recall the realistic case, when the wall consists of two 
layers: the left layer is of LL thickness, DL diffusion coefficient 
and λL thermal conductivity coefficient, while these parameters 
for the right layer are LR, DR and lR (see Table 2). In this case 
the cheat transfer process formulae cannot be derived in so sim-
ple way, as eq.(11) and further. It is possible indeed to derive a 
function fTh(x) in form of the Fourier series, compensating the 
steady-state x-profile of temperature, like eq. (12), i.e.:

where bL and bR denote slope of the steady-state profile in the 
left and right layer (see Fig. 1): 

However, original attempts to derive simple formulae for ex-
ponential dumping factors, like in eq. (11), fulfilling the eq. (4) 
at the interlayer border point  did not succeed. Hence, 
in the sequel a semi-analytical approach is proposed, exploiting 
the superposition law for effects of T(t, xb) on T(t, x≠xb) and q(t, 
x≠xb). 

Let us take hypothetically that TbT(0, xb) may be changed by 
1oC. The response of T(t, x<xb) and T(t, x>xb) to such excitation, 
i.e. the step response model hTbL and hTbR) may be derived by us-
ing the same trick as in eq. (11), but related separately to the left 
and right hand side of xb (or more generally – to left (vs. xb) and 
right homogeneous sections of the wall): 

Similarly, the step response of the heat flow may be written by 
proper modifications of eq. (26): 

Figure 9. Comparison of step response of heat losses stream qq(t, 0), at very initial time section, calculated in the discretized state-space model - eqs.(8) with 
two different Dx (left and central subfigures), and by employing the analytical formula (26) for x=0 (right subfigure), calculated for the brick wall. In the right 
subfigure results obtained for i=150 are shown as point-lines, and for i=300 – dotted lines
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The effect of continuous changes of Tb(t) on T(t, x≠xo) may 
be calculated with the convolution model (21) for a fixed x (irre-
spective its effect at another x), e.g. for x>xg we have:

In a typical real heat conduction process Tb(t) is produced by 
changes in a border temperature, say TL(t). Thus, if Tb(t) is the 
response to the unit step change in TL the following equality is 
held: 

In a similar way one may express the step response hTL(t, 
x<xg). However, in this case a dual impact of DTL on hTL(t, x) 
must be taken into account. First it is the direct effect of the left 
side disturbance DTL expressed by the step-response formula 
denoted as hTLT(t, x): 

and then a back effect of dTg(t)/dt expressed by hTbL(t, x) and 
used in the convolution formula like in eq. (33). The superposi-
tion of both these effect leads to the formula: 

To check the formulae (34, 36) accuracy we made numerical 
calculations for eq. (34), assuming the homogeneous wall (DR= 
DL= D), by employing the analytical formula for Tb(t)=hTL(t, xb), 
which is: 

and:   
  
  
One may proof that: 

Here I2 stands for the following integral: 

where
   

The above calculations faced numerical problems, as in many 
components of the series (41) v is very close to zero, although 
there exists a finite limit. It was found that in the case where 
substitution solves the problem. 

In a similar way the heat-stream step response hqTbqL(t, x<xb) 
and hqTbqR(t, x>xb) may be derived involving hqTbL(t, x) and hqTbL(t, 
x), respectively, in the convolution like in eqs. (33, 36) and com-
pleted with hqTLqL(t, x) representing the direct effect of DTL to 
hqTbqL(t, x<xb) – see eq. (32): 

Through numerous calculations, it has been shown that the 
formulas (34, 36) give sufficiently good results with errors of 
the order of 10-6, when confronted with effects of analytical for-
mula (11). Interestingly, it was stated that the contribution of the 
integral I2 to the value of hT(.) is in the order of 10-3 , that is shown 
in Fig.10 (see upper-right plot). Thus, in rough estimates, it can 
be taken that 

  and     (44)

Now, let us recall the heterogeneous wall, for which the eq. 
(37) is not applicable so that a new formula for Tb(t) must be 
found satisfying eq. (4). In the border layer of the following en-
ergy balance equation is valid: 

Thus we have to express the derivatives  (i.e. the in-
put and output heat streams) as affected separately: first directly 
by change DTL =1oC and back – by continuous changes in Tb due 
to DTL, with the convolution formula (21), like in eqs. (33, 36) for 
temperature calculations. 

No analytical solver was found for Tb(t) based on eq.(45), 
hence the step-response hTTb(t) to DTL =1oC must be solved in a 
numerical way for the sequence of discrete time values tn with a 
fixed Dt and for an appropriately small Dx. Having in mind the 
pictures shown in Figs. 7 and 8, it should be done by employing 
the analytical formulae for the heat streams averaged over Dt 
interval: hqTLqL(t, LL-Dx/2) – see eq. (43), hqTbR(t, Dx/2) – eq. (31) 
and, hqTbL(t, LL-Dx/2) – eq. (32). The equation (45) discretized in 
space and time produces the step response model ( notation will 
be used in sequel for better readability). The initial conditions 
are as follows: 

 (31)

 (39)

 (32)

 (41)

 (42)

 (43)

 (45)

 (46)
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 (35)
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The formula for  derived from eq. (45) 
may be written shortly in the following form: 

where  denotes the cumulated feed-back effect of 
Tb() to itself via heat transfer: 

Let DLR and DRL denote thermal diffusion coefficients for the 
left and right halves of the layer: 

and SqTLqL(t, LL-Dx/2), SqTbL(t, LL-Dx/2) SqTbR(t, LL+Dx/2) de-
note the series in hqTLqL(t, LL−Dx/2), hqTbL(t, LL-Dx/2) and hqTbR(t, 
LL+Dx/2) in eqs.(31, 32, 43), respectively: 

Substitution of eqs. (50–52) to eq.(48, 47) and a simple trans-
formation leads to the required formula for the step –response 
hTTb(tn), for n=1, 2, ….: 

and finally: 

Notice that all of the expressions (50-53) must be calculated 
for x, where their convergence is weak, thus numerical problems 
may be expected. 

In order to evaluate the formula (53) accuracy we have applied 
it to the homogeneous brick-wall (see Table 2), and the series 
(denotes as Tbn(tn) – numerical) obtained in this way was con-
fronted with that calculated using the analytical formula (37) 
(denotes as Tba(tn) – analytical). The results are shown in Fig.11. 
One can see in this figure that the accuracy of the model (53) is 
very good (maximum relative error of Tbn(tn) is less than 0.03%). 
However, it should be emphasized that the achievement of such 
precision requires the use of very low values for Dx=5*10-6L [m], 
rather short sampling (and averaging) interval Dt=1s, and rather 
large number of components in the series (50−52) (Imax=4000). 
Especially, effect of Dx is very significant. It has been found that 
Dx=1*10-4L already gives errors of the order of 1%, while Dx-
=1*10-6L leads to numerical instability of eq. (53,53). Large Imax 
makes the calculation time consuming, but we need to calculate 
the series Tbn(tn) only once, and it may be then used in multi-
ple simulations as the convolution model. The left subfigure in 
Fig.11 illustrates contribution of main components of eq.(53) to 
the DTb, i.e. DTbL – effect of the left (original) excitation TL=1oC 
and DTbL – feed-back effect of Tb(t). 
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Figure 12 illustrate differences in dynamics of heat streams 
involved in the energy balance equation (45). 

Now, there are no more obstacles to use the formulae (53, 54) 
to calculate the step response of Tb, to the unit step change of TL, 
i.e. hTTb(t, LL)=Tb(t), for a heterogeneous two-layer partition, as it 
needs only proper values for DL, DR, λL and lR to be taken. 

Results of such calculations, made for the wall characterized 
in Table 2, and treated before with the state-space model (7), are 
presented in Fig. 13 and Fig. 14. 

Finally, we may derive the most demanded semi-analytical 
formula for the step response of heat losses stream to the unit 
step change DTb=1oC, using the approach as in eq. (46), and em-
ploying the step response hTdTb(t)=DTb(t) calculated once with eq. 
(53) and stored for the considered wall. As in the eqs. (42, 47), 
by virtue of superposition law the following equation may be 
written: 

The step responses  and  may be calcu-
lated once for n=1,... nmax, (due to causality  and 

), by using the formulae (43) and (32) with x=0: 

In the similar way one can derive the step response of DTb 
to the unit step change of the right side temperature DTR=1oC 
(denotes as – see eqs. (46-53)), and then derive the formula like 
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Figure 11. Effects of applying the semi-analytical formula (53) to the homogeneous wall, compared with the temperature Tb(t) profile obtained by using the 
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Figure 12. Differences in dynamics of heat streams qTTb(t)=hqTbTb – see 
eq.(48), and qTL(t)=hqTLqL – see eq.(43), going to the layer of x=LL due to the step 
response of Tb(t) – (left subfigure) and from the original excitation DTL =1oC 
(right subfigure). Calculations made for the homogeneous wall
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(55) for step response of heat losses at x=0 to DTR (in this case it 
depends only on DTb): 

The series and calculated ones for a considered wall constitute 
the complete model for heat losses qi(tn), which may be exploited 
in any simulations by using the convolution formula: 

Effects of calculation of the step response with eq. (55) (index 
a) compared to the step response of heat losses obtained by ap-
plying the state-space model (8) (index n) with Dx={0.003,10-3L, 
5*10-4L} and Dt=0.1s are shown in Fig. 15 (effects of eq.8 were 
averaged over Dt=1s, like in eq. 55). It may be seen that er-

Figure 13. Temperature Tb(t) profile obtained by using the semi-analytical formula (53), calculated for the two-layer wall (brick and isolation) with the 
interlayer border at x=LL=0.3m (see Table 2 for further parameters). Heat streams (50-52) calculated with Dx=5*10-6L [m], averaged over Dt=1s. Contribution of 
components of eq.(53) is shown in the right subfigure (dotted line – effect of the convolution term in eq.53)

Figure 14. Differences in dynamics of heat streams qTTb(t)=hqTbTb – see 
eq.(48), and qTL(t)=hqTLqL – see eq.(43), calculated for the two layer wall (see 
Figs.12, 13 for more explanations)
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rors of eq. (8) are significant, and they a minimal for Dx=10-3/
L=0.45mm. Larger Dt and Dx lead to much higher errors, but 
for the lower Dx the relation Dt/Dx is too large, that produces 
numerical errors. The small Dt makes the model (8) c.a. twice 
more time consuming then the formula (58). 

Conclusions 

Analytical formulae for heat transfer available in literature [7, 8] 
make possible calculation of step response of temperature and 
heat losses for any homogenous building partition, that may be 
then directly applied in simulation instead of state space (recur-
sive) model. In the paper semi-analytical formulae was derived 
for two-layer walls (typical building partitions), which was 
found as more accurate and less time-consuming then the state-
space model. Hence, it may be recommended for real-time simu-
lations demanded in modern heating control systems. Moreover, 
the proposed model may be used to check accuracy of simplified 
calculations with the state-space formulae, and to adjust discre-
tization parameters Dt and Dx. 
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