Practical aspects of heat conduction simulation in household heating optimization tasks

Jan Tadeusz Duda*
AGH University of Science and Technology, Kraków, Al. Mickiewicza 30, Kraków, Poland

Article history:

Received 7 June 2019
Received in revised form 3 July 2019
Accepted 3 July 2019
Available online 4 July 2019

Abstract

Mathematical model selection for simulation heat conduction processes in household heating optimization task is considered. The essence of the matter is that the heat transfer dynamics properties are very diversified, so simulation procedure formulae and parameters should be properly selected to avoid excessive modeling errors with reasonable calculation time being held. The typical state-space model and analytical formulae for step response of the heat conduction across a homogeneous wall are presented and compared in terms of modeling errors. Formal and numerical problems of heat losses simulation are discussed. Semi-analytical step-response formulae for multilayer walls are derived and their accuracy is compared with effects of simulation based on the state-space model. Some recommendations for time and space discretization parameters are given.

Keywords: thermal diffusivity, cheat convection, analytical solutions of diffusion process, household heating

Introduction

Household heating optimization needs mathematical models to make possible fast simulation of such processes as heat exchange, air mixing and thermal conduction across the walls. A specific feature of the processes to be considered in this task is large diversification of their dynamics. There are very fast cheat exchange phenomena in cheating devices (gas boilers and radiators), where transient response is of seconds, a bit slower air mixing with time constants of minutes, and cheat transfer across the walls which is of fast initial response (more than 50% of final level in several seconds) but going very slowly (in tens of hours) to its steady state.

Typical calculations of buildings thermal properties are in general very simplified and they are limited to steady states. Appropriate recommendations and data are widely available in literature, e.g. [1, 2, 3]. In turn, to the process dynamics calculations one may exploit typical discretized state space models [4], producing time responses of temperature and heat streams at any point. However, elaboration of effective algorithms (e.g. modern MPC controllers [4,5]) to minimise the energy consumption needs more accurate analysis of the process dynamics. In particular, to avoid excessive simulation errors the state space model accuracy should be evaluated, depending on the space and time discretization parameters, especially cheat losses at the initial transient response interval. For homogeneous walls it may be done by using analytical solutions of the thermal diffu-

[^0]sion process. But for typical multilayer building partitions there are no so simple formulae, hence a semi-analytical approach is proposed in the paper.

To this aim numerical properties of the analytical formulae are taken under considerations, and a semi-analytical model of the thermal diffusion process is elaborated, which makes possible calculation for multilayer (heterogeneous) walls more precisely than with the state-space model. In effect a convolution model is proposed to simulate the household heating process as an alternative to the state-space model. Recommendations for the time and space discretization and for reduction of calculation time are given.

Mathematical modeling of household heating processes

Let us take a household heating system in a typical single-family house consisting of a gas boiler heating the circulating water and radiators placed in particular rooms. The heat transfer is by the conduction from hot gases to water in the boiler and from hot water to air in radiators, the convection outside of the building with air due to natural or forced ventilation, mixing of air inside the rooms, and conduction by different building partitions (in particular heat losses across the external walls). Rules and appropriate formulae for heat demand evaluation are specified by European and polish standards (e.g. [2, 3]), with respect to comfort needs, climate conditions and building properties, which affect averaged heat losses and so - heat consumption depending mainly on the surface of building partition and ventilation

Table 1. Heat losses distribution in a typical single-family house (source [1])

Ventilation	Windows and doors	External walls	Floors	Ceilings and roof
$30-40 \%$	$10-15 \%$	$20-30 \%$	$5-10 \%$	$10-25 \%$

intensity. Distribution of heat losses is roughly characterized in Table 1.

Application of typical automated heating control systems make possible to reduce the energy consumption by $5-15 \%$ (in older buildings better isolation of external wall may yield energy savings by $10-25 \%$) [1]. However, implementation of modern control algorithms, especially predictive controllers [4, 5], employing precisely specified time profiles of required and external temperature to optimize in real time the heat production, make possible reach noticeably higher energy savings. Nevertheless it needs elaboration of mathematical models enabling for fast simulation of the heat transfer dynamics.

The heat convection dynamics in a room space (including heat losses due to ventilation) may be described by the mixing dynamics formula [4]. When assuming an ideal mixing of air and negligeable changes of its density $r_{a} \approx 1.12 \mathrm{~kg} / \mathrm{m}^{3}$, the energy balance in a room of volume V_{a} may be written as:

$$
\begin{equation*}
\frac{d T_{a}}{d t}=\frac{F_{a}}{V_{a}}\left(T_{e}-T_{a}\right)+\frac{1}{V_{a} \rho_{a} c_{a}}\left(q_{r}-\sum_{i} q_{i}\right) \tag{1}
\end{equation*}
$$

where T_{a} denotes averaged temperature in the room, $c_{a}-$ specific heat capacity of air at constant pressure ($c_{a} \approx 1 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$); $F_{a}-$ ventilation air flow ($\left.F_{a} \approx 25 \mathrm{~m}^{3} / \mathrm{h}, F_{a \min }=17.5 \mathrm{~m}^{3} / \mathrm{h}[2]\right), T_{e^{\prime}}$ - temperature of air going into the room, $q_{s i}$ - the i-th stream of heat losses due to conduction across the i-th building partition [kWh] and q_{r} stands for the heat inflow from radiators [kWh]. Parameters for the model (1) are widely available in literature (eq. [1]).

The transient response of the process (1) disappears in minutes $\left(V_{a} / F_{a} \approx 120 \mathrm{~min}\right.$, but first reaction to q_{r} and q_{i} changes is much faster). The ideal mixing assumption is rather serious simplification, but it is necessary to avoid tremendously complicated calculations of fluid dynamics [4]. Thus the errors due to this simplification are a reference measure for demanded accuracy of remaining processes modeling.

The heat conduction across the radiator and boiler walls (producing q_{r}) is very fast. Hence a transient response of this process may me omitted, and the steady state model of this process (involving water transportation lags) [4] may be used in simulations. It has the following form:

$$
\begin{align*}
& q_{r}=F_{w} c_{w}\left(T_{w h}-T_{w c}\right) ; \quad F_{w}=\frac{C_{F r}}{\eta_{w h}}\left(T_{w h}-T_{w c}\right) ; \\
& \left(T_{w h}-T_{w c}\right)=\left(T_{w h}-T_{a}\right)\left(1-\exp \left(-\frac{K_{r}}{F_{w} c_{w}}\right)\right) \tag{2}
\end{align*}
$$

where $T_{w h}$ and $T_{w c}$ denote hot and cold water temperature, c_{w} and $h_{w h}$-specific heat capacity $[\mathrm{kJ} / \mathrm{kg} / \mathrm{K}]$ and dynamic viscosity coefficient $[\mathrm{kg} / \mathrm{m} / \mathrm{h}]$ of hot water, F_{w} - mass flow of water $[\mathrm{kg} / \mathrm{h}]$ (forced by a difference between hot and cold water density), $C_{F r}$ is a geometric constant of pipes and K_{r} stands for a material and geometric constant of radiator.

The model (2) is applicable while $F_{w}>F_{w \text { min }}$, i.e. while resident time of water in the heat exchanger is no longer than a couple of seconds. In another case a water heating dynamics formula should be employed.

The same formulae (2) may be used to describe the water heating process in a gas boiler, with $T_{w h}$ replaced by $T_{w c}$ and vice-versa, and an average flame temperature T_{f} replacing T_{a}. In the heating control system the gas boiler is employed as an actuating device aimed at producing the hot water of a temperature $T_{w h}$ close to its reference value calculated by the supervisory controller optimizing the heat consumption with a presumed room temperature time profile being held.

The key issue (focused in this paper) is an appropriate modelling of heat losses streams $q_{i}[\mathrm{kWh}]$ in eq.(1) The basic formula describing the heat losses due to heat conduction across a solid wall is the 1D Fourier's law:

$$
\begin{equation*}
q_{i}(t)=-\lambda_{i} S \frac{\partial T_{s}(t, 0)}{\partial x} ; \quad q_{s i}(t) \stackrel{\text { def }}{=} \frac{q_{i}(t)}{s}=-\lambda_{i} \frac{\partial T_{s}(t, 0)}{\partial x} \tag{3}
\end{equation*}
$$

where $T s(t, 0)$ denotes the wall surface temperature, l_{i} is the thermal conductivity coefficient of the wall material, $[\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]$, $q_{S i}$ is heat losses stream for $1 \mathrm{~m}^{2}$ of wall $\left[\mathrm{kWh} / \mathrm{m}^{2}\right]$.

However, to determine the heat stream it is necessary to exploit the full 1D model of the thermal diffusion dynamics, which has the form:

$$
\begin{equation*}
\frac{d T_{s}(t, x)}{d t}=D_{i} \frac{\partial^{2} T_{s}(t, x)}{\partial x^{2}} \quad D_{i} \stackrel{\text { def }}{=} \frac{\lambda_{i}}{e_{i} c_{w i}}\left[\frac{m^{2}}{s}\right] \tag{4}
\end{equation*}
$$

The model (4) may be used to simulation the thermal conductivity process in approprietely discretised space of the wall (usually one takes a constant increment $\mathrm{D} x$ of the space coordinate x), in a series of fixed time instants t_{n} with a constant sampling interval $\mathrm{D} t$, starting with any initial conditions $T_{s i}(0)=T_{s}(0, i \cdot \mathrm{D} x)$, with any boundary conditions $T_{s}(t, 0)$ and $T_{s}(t, L)$. The time and space discretization leads to the lumped parameter state-space model consisting of equations expressing the dymamic energy balace in i-th layer of the wall ($i=1, \ldots M, M=L / \mathrm{D} x)$, in which the temperature gradient is calculated with the approximating formula:
$\left(\frac{\varrho_{i-1} c_{i-1}+\varrho_{i} c_{i}}{2}\right) \frac{\Delta T_{s}(n, i)}{\Delta t}=\lambda_{i-1} \frac{T_{s}(n, i-1)-T_{s}(n, i)}{\Delta x^{2}}-\lambda_{i} \frac{T_{s}(n, i)-T_{s}(n, i+1)}{\Delta x^{2}}$
where c_{i} denotes a specific heat capacity of the wall material in i-th layer $[\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})]$ and ρ_{i} is its density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$.

It is noteworthy that in the formula (5) different values of λ, ρ and c_{w} for each layer are admitted. Let us denote:
$D_{s i} \xlongequal{\text { def }} \frac{2\left(\lambda_{i-1}+\lambda_{i}\right)}{\varrho_{i-1} c_{w i-1}+\varrho_{i} c_{w i}} ; \quad D_{l i} \stackrel{\text { def }}{=} \frac{2\left(\lambda_{i-1}\right)}{\varrho_{i-1} c_{w i-1}+\varrho_{i} c_{w i}} ; \quad D_{r i} \stackrel{\text { def }}{=} \frac{2\left(\lambda_{i}\right)}{\varrho_{i-1} c_{w i-1}+\varrho_{i} c_{w i}}$ (6)

The equation (5) may be transformed to the form producing directly $T_{s}(n+1, i)$:
$T_{s}(n+1, i)=T_{s}(n, i)\left(1-\frac{D_{s i} \Delta t}{\Delta x^{2}}\right)+\left(\frac{D_{i l} \Delta t}{\Delta x^{2}} T_{s}(n, i-1)+\frac{D_{r i} \Delta t}{\Delta x^{2}} T_{s}(n, i+1)\right)$

It should be noticed that according to general rules of modeling of causal processes dynamics [5], in the formula (6) one assumes constant values of temperatures during the time interval Dt in all the layers, and the increment $\mathrm{D} T_{s}(n, i)$ concerns the value averaged over a neighborhood $\mathrm{D} x / 2$ of the point $x_{i}=i \cdot \mathrm{D} x$. It points that the heat stream q_{i} in eq.(3), playing the key role in the simulation model in eq.(1), may be highly sensitive to values Dx and $\mathrm{D} t$ taken arbitrarily. This sensitivity may be reduced a bit by using the following (more accurate) formulae:
$T_{s}(n+1, i)=T_{s}(n, i) \propto_{i}+\left(1-\propto_{i}\right)\left(\frac{D_{l i}}{D_{s i}} T_{s}(n, i-1)+\frac{D_{r i}}{D_{s i}} T_{s}(n, i+1)\right)$
where: $\propto_{i} \stackrel{\text { def }}{=} \exp \left(-\frac{D_{s i} \Delta t}{\Delta x^{2}}\right)$
A general rule of thumb for assigning the value for $\mathrm{D} t$ for $\operatorname{sim}-$ ulations is [4], that the following relations should be held:
$\max _{i} \frac{D_{s i} \Delta t}{\Delta x^{2}}<0.1 \quad$ i.e. $\frac{D_{s i} \Delta t}{\Delta x^{2}} \cong 1-\propto_{s i}$

In order to evaluate a precision of calculations based on eq.(8) simulations of the heat transfer across a typical building partion were performed. First, a „homogeneous" brick wall was taken under considerations of 0.45 m thickness, then a more realistic partition consisting of two layers: 0.3 m of brick and 0.15 m of typical polystyrene insulating layer. Thermal parameters of such a wall (taken from [6]) are presented in Table 2.

Selected sequence of temperature profiles across the partition after step-wise change of left border temperature from $15^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ are shown in Fig.1, assuming the homogeneous brick wall

Figure 1. Selected temperature profiles across the homogeneous brick wall (left subfigure) and the two-layer wall: brick 0.3 m and polystyrene 0.15 m (right subfigure) calculated with eq.(8) for different $\mathrm{D} t$ and $\mathrm{D} x$.

Table 2. Thermal parameters of typical building partitions and resultant thermal diffusion coefficients (source: [6], author's own recalculations)
$\left.\begin{array}{cccccc}\hline & \begin{array}{c}\text { Thermal } \\ \text { Material of } \\ \text { partition }\end{array} & \begin{array}{c}\text { conductivity } \\ {[\mathrm{kWh} /(\mathrm{m} \mathrm{K})} \\ l_{i}\end{array} & \begin{array}{c}\text { Density }[\mathrm{kg} / \\ \left.\mathrm{m}^{3}\right] \mathrm{r}_{m}\end{array} & \begin{array}{c}\text { Specific heat capacity }[\mathrm{kJ} / \\ (\mathrm{kg} \mathrm{K})]\end{array} & \begin{array}{c}\text { Thermal diffusion } \\ \text { coefficient }\left[\mathrm{m}^{2} / \mathrm{h}\right] \\ c_{m}\end{array}\end{array} \begin{array}{c}\text { Partition size }[\mathrm{m}] L_{m}\end{array}\right]$

$\mathrm{T}\left(\mathrm{t}, \mathrm{x}_{\mathrm{i}}\right)$ for $\mathrm{x}_{\mathrm{i}}=0.291 \mathrm{~m} 0.294 \mathrm{~m} 0.297 \mathrm{~m} 0.300 \mathrm{~m} 0.303 \mathrm{~m} \quad \Delta \mathrm{t}=10.0 \mathrm{~s} . \Delta \mathrm{x}=3.00 \mathrm{~mm}$

$\mathrm{T}\left(\mathrm{t}, \mathrm{x}_{\mathrm{i}}\right)$ for $\mathrm{x}_{\mathrm{i}}=0.291 \mathrm{~m} 0.294 \mathrm{~m} 0.297 \mathrm{~m} 0.300 \mathrm{~m} 0.303 \mathrm{~m} \quad \Delta \mathrm{t}=1.0 \mathrm{~s} . \Delta \mathrm{x}=3.00 \mathrm{~mm}$

Figure 2. Time profiles of temperature at selected points calculated with eq.(8): left subfigures - homogeneous brick wall; right subfigures - the twolayer wall: brick 0.3 m and polystyrene 0.15 m .
(left subfigure) and the two layer wall: brick 0.3 m and polystyrene 0.15 m (right subfigure). Calculation time was very short ranging from 0.14 s . for 43200 time samples and 15 layers to 4 s . for 432000 time points and 150 layers. It may be seen that there are no significant differences depending on $\mathrm{D} t$ and $\mathrm{D} x$. Time profiles of the temperature at selected points x_{i} (close to $x=0.3 \mathrm{~m}$) are shown in Fig. 2 (calculated with $\mathrm{D} x=0.003 \mathrm{~m}, \mathrm{D} t=10 \mathrm{~s}$ and 1 s .). Initial sections of the transient responses are exposed.

Very long transient response (ca. 100h) is specific for this process. Differences in transient time and initial lags (visible in Fig.2) for $\mathrm{D} t=10 \mathrm{~s}$ (upper subfigures) and $\mathrm{D} t=1 \mathrm{~s}$ (lower subfigures) point that proper selection of $\mathrm{D} t$ is of importance, and $\mathrm{D} t=10 \mathrm{~s}$ is too large. However, the role of proper selection of $\mathrm{D} t$ and $\mathrm{D} x$ becomes evident when consider the heat losses stream q_{i}, which is crucial in the model (1). Let $q_{T}(t, 0)=q_{i} / S$ denotes the heat stream $\left[\mathrm{kWh} / \mathrm{m}^{2}\right]$ calculated numerically by using eq.(8):

$$
\begin{equation*}
q_{T}(t, 0)=\frac{\lambda_{m}}{\Delta x}\left(T_{s}(t, 0)-T_{s}(t, \Delta x)\right) \tag{10}
\end{equation*}
$$

Results of calculations of q_{T} with different $\mathrm{D} t$ and $\mathrm{D} x$ are presented in Fig. 3.

Figure 3. Time profiles of heat losses stream (eq.10) calculated for the homogeneous wall with different Dt and $\mathrm{D} x$, presented in full time interval in hours (left subfigures) and at initial time section of transient response in seconds (right subfigures, points show 10s intervals)

Huge differences between values found with $\mathrm{D} t=10 \mathrm{~s}$ and 1 s , as well as with $\mathrm{D} x=30 \mathrm{~mm}$ and 3 mm are clearly seen in large time interval (up to 50h), but especially at very initial section of transient response (see right subfigure). It should be noticed that the formulae (8) yield values of q_{T} averaged over $\mathrm{D} t$, hence $q_{T}(0$, $0) \equiv 0$ is assumed, and differences visible for the same $\mathrm{D} x$ might be acceptable in more approximate calculations. Nevertheless, the effect of $\mathrm{D} x$ is due to the temperature gradient averaging, so it should be eliminated as a typical artefact, because in eq.(1) estimation of the outgoing heat stream is needed. The question what value for $\mathrm{D} x$ should be taken to reach demanded accuracy of calculations may be answered by analysis of analytical solutions of eqs. (3, 4). It is taken under consideration in the next section.

Formal and numerical properties of analytical solutions of the thermal conductivity process

For the diffusion process of constant diffusion coefficient D, with some special initial and boundary conditions, there are analytical solutions of equations (4), (5). In particular, when at $t=0$ (initial condition) the temperature across the wall is zero $T(0, x)=0, x$ (L denotes the wall thickness), and temperature T_{L} at the left bound of the wall $T_{L}=T(t, 0)=1, \mathrm{t} \geq 0$, while at the right bound $T_{R}=T(t, L)=0, \mathrm{t} \geq 0$ (boundary conditions for thermal conductivity) [6, 7], the analytical solution of eqs (4), (5) for the unit step change of T_{L}, i.e. the step response denoted as $h_{T L}(x, t)$ is:
$h_{T L}(t, x)=\left(1-\frac{x}{L}\right)-\frac{2}{\pi} \sum_{i=1}^{\infty} \frac{1}{i} \sin \left(\frac{i \pi x}{L}\right) \exp \left(-\frac{i^{2} \pi^{2} D t}{L^{2}}\right)$

By virtue of eq.(2) linearity, the formula (11) may be viewed as the universal model of the process. It results from a mathematical trick. The first term at the right hand side writes the final steady state profile, the first term in the series is a special function expressed in the form of Fourier series [7]:
$\frac{2}{\pi} \sum_{i=1}^{\infty} \frac{1}{i} \sin \left(\frac{i \pi x}{L}\right)=\left\{\begin{array}{cl}0 & \text { for } x=0 \\ \left(1-\frac{x}{L}\right) & \text { for } x \in(0, L)^{\prime}\end{array}\right.$
which is used to compensate the final profile at $\mathrm{t}=0$ except for the boundary value. Then, it is dumped to zero with $t \rightarrow \infty$ by the exponential term to produce the solution. As the matter of fact it is composed of two periodical functions of $2 L$ period [9]:
$f_{1}(x)=\frac{2}{\pi} \sum_{i=1}^{\infty}\left(1-(-1)^{i}\right)^{\frac{1}{i}} \sin \left(\frac{i \pi x}{L}\right)=\left\{\begin{array}{rc}-1 & \text { for } x \epsilon(-L, 0) \\ 0 & \text { for } x=\{-L, 0, L\} \\ 1 & \text { for } x \in(0, L)\end{array}\right.$
$f_{2}(x)=\frac{2}{\pi} \sum_{i=1}^{\infty}(-1)^{i} \frac{1}{i} \sin \left(\frac{i \pi x}{L}\right)=\left\{\begin{array}{cc}-x / L & \text { for } x \in(-L, L) \backslash\{0\} \\ 0 & \text { for } x=\{-L, 0, L\}\end{array}\right.$

Plots of the above functions vs. x reached with a finite iteration number ($i<n_{\max }$) are shown in Fig. 4.

As it is seen in Fig. 4 the sums in eqs.(11-13) are rather quickly converging, even at $t=0$ and $x=0$. In turn, properties of the functions $h_{1}(t, x), h_{2}(t, x)$ based on the series f_{1} and f_{2} completed with the exponential time factors (like in eq.11), as well as of the sum $h_{1}+h_{2}$, viewed versus x coordinate in the range $-L<\mathrm{x}<L,(L=0.45)$ are shown in Fig. 5 for selected time instants the same as in Fig.1. (calculation were carried-out for the brick wall of $L=0.45$ - see Table 1 for parameters).

It may be seen in the lower-right subfigure that the function $h_{2}(t, x)$ describes the physical heat conduction process but only for (outside this interval it is of no physical meaning, although it remains a formal solution of eq.(4) for any x).

By using the same trick related to the unit step change of the right hand side temperature T_{R} one arrives at the step response formula $h_{T R}(t, x)$ for the second input T_{R} of the process:
$h_{T R}(t, x)=\left(\frac{x}{L}\right)+\frac{2}{\pi} \sum_{i=1}^{\infty} \frac{(-1)^{\mathrm{i}}}{i} \sin \left(\frac{i \pi x}{L}\right) \exp \left(-\frac{i^{2} \pi^{2} D t}{L^{2}}\right)$

A simultaneous unit step-wise change of both $T_{L ;}$ and T_{R} gives the typical thermal diffusion process, which may be described by using only $h_{1}(t, x)$. It leads to the following diffusion step-response formula $h_{T H}(t, x)$ (not exploited in this paper):
$h_{T H}(t, x)=1-\frac{1}{\pi} \sum_{i=1}^{\infty}\left(1-(-1)^{i}\right) \frac{1}{i} \sin \left(\frac{i \pi x}{L}\right) \exp \left(-\frac{i^{2} \pi^{2} D t}{L^{2}}\right)$

The values of the functions $h_{T L}(t, x), h_{T R}(t, x)$ and $h_{T H}(t, x)$ may be calculated individually for any x and t irrespective their neighbourhood, i.e with no effect of $\mathrm{D} x$ and $\mathrm{D} t$. The series in eqs.($11,15,16$) converges rather quickly (it is enough to take $\mathrm{i}<300$), so calculation of one time profile of e.g. $h_{T L}$ at a given x with $\mathrm{D} t=1 \mathrm{~s}$ up to $\mathrm{t}=120 \mathrm{~h}$ takes a couple of seconds (a bit more then solving of the full set of eqs.(8)). Space profiles of $h_{T L}(t, x)$,

Figure 4. Analytical functions $f_{1}(x)$ - eq.(12), $f_{2}(x)-$ eq.(13) and $f_{1}(x)+f_{2}(x)-$ eq.(11) calculated with finite number of iterations $i<n_{\text {nax }}(\mathrm{D} x=3 \mathrm{~mm})$

Figure 5. Space coordinate x profiles of analytical functions $h_{1}(t, x), h_{2}(t, x)$ and $h_{T L}(t, x)$ calculated at selected time instants (the same as in Fig.1) with finite number of iterations $i<1000$ (D $x=3 \mathrm{~mm}$, brick wall)

Figure 6. Space coordinate x profiles of analytical functions $h_{T L}(t, x), h_{T R}(t, x)$ and $h_{T H}(t, x)$ calculated at selected time instants (the same as in Fig.1) with finite number of iterations $i<1000$ ($\mathrm{D} x=3 \mathrm{~mm}$, brick wall)
$h_{T R}(t, x)$ and $h_{T H}(t, x)$ for the selected time instants are presented in Figure 6.

Due to the linearity of eqs (4) and (5) one may exploit the formulae $(11,15)$ as the universal step response model of the heat transfer process at any point x, excited by changes of the left $T_{L}(t)$ and right $T_{R}(t)$ temperature. Let us assume an initial steady-state conditions (for $t=0$).
$T\left(0_{-}, 0\right)=T_{L 0}=$ const $; T\left(0_{-}, L\right)=T_{R 0}=$ const $;$
$T_{0}(0, x)=\left(T_{L 0}-T_{R 0}\right)\left(1-\frac{x}{L}\right)+T_{R 0}$
The step response to a simultaneous step-wise change in the boundary conditions for $t \geq 0$:
$T(t, 0)=T_{L}=$ const,$\quad T(t, L)=T_{R}=$ const $;$
can be expressed in the form following (exploiting additivity of excitation effects in linear transforms):
$T(t, x)=\left(T_{L 0}-T_{R 0}\right)\left(1-\frac{x}{L}\right)+T_{R 0}+\left(T_{L}-T_{L 0}\right) h_{T L}(t, x)+\left(T_{R}-T_{R 0}\right) h_{T R}(t, x)$

The model (19) may be employed in any simulation procedure by calculating its convolution with any time profile of $T_{L}(0, t)$. For causal systems it may be expressed by the general convolution formula:
$y(t)=\sum_{k} \int_{\tau=-\infty}^{\infty} u_{k}(t-\tau) g_{k}(\tau) d \tau ;$
$y(t)=\sum_{k} \int_{\tau=0}^{\infty} u_{k}(t-\tau) g_{k}(\tau) d \tau$
where $u_{k}()$ stands for a k-th input time profile, $g_{k}(t)$ denotes the impulse-response of the considered process attributed to the k-th input (for causal systems $g(\tau \leq 0) \equiv 0$. It may be also written in the alternative form, involving the step-response $h(\tau)(h(\tau \leq 0) \equiv 0)$, which for $u_{k}(t \leq 0) \equiv 0$ is:
$y(t)=\sum_{k} \int_{\tau=0}^{t} \frac{d u_{k}}{d t}(t-\tau) h_{k}(\tau) d \tau ; \quad h(t) \stackrel{\text { def }}{=} \int_{0}^{t} g(\tau) d \tau ;$

Having the formulae for $h_{T}(t, x)$ we may easily derive the formulae for cheat stream $q_{s}(t, x)$ according to the Fourier's law (3). The formula for the step response of heat flow $h_{q T L}(t, x)$ at any x-point and time t, to step change in temperature $\mathrm{D} T_{L}=1$ has the following form:
$h_{q T L}(t, x)=\frac{\lambda}{L}+\frac{2 \lambda}{L} \sum_{i=1}^{\infty} \cos \left(\frac{i \pi x}{L}\right) \exp \left(-\frac{i^{2} \pi^{2} D t}{L^{2}}\right)$

In the same way one may express the step response $h_{q T R}\left(t_{n}, x\right)$ to unit step change $\mathrm{D} T_{R}=1$:
$h_{q T R}(t, x)=-\frac{\lambda}{L}-\frac{2 \lambda}{L} \sum_{i=1}^{\infty} \cos \left(i \pi\left(1-\frac{x}{L}\right)\right) \exp \left(-\frac{i^{2} \pi^{2} D t}{L^{2}}\right)$

In household heating calculations the most important issue is appropriately accurate modeling of the heat stream $q(t, 0)$ outgoing a heated room (see eq.1). To this aim the one may employ directly the eq.(22). However the series in eq.(22) converges very slowly for $x>0$, and it does not converge at $\mathrm{x}=0$ and $\mathrm{t}=0$. In particular, for $t=0$ the formula (22) represents the Dirac delta function $\delta(0)$ in its Fourier series form [8, 9]:
$\frac{2}{L} \sum_{i=1}^{\infty} \cos \left(\frac{i \pi x}{L}\right)=\left\{\begin{array}{cc}1 / \partial x & \text { for } x=\{0, \pm 2 L\} \\ 0 & \text { for } x \neq\{0, \pm 2 L\}\end{array}\right.$

Hence one may consider calculation of $q(t, 0)$ by using the approximating formula, like in eq. (10):
$q(t, 0)=\frac{\lambda}{\Delta x}\left(h_{T L}(t, 0)-h_{T L}(t, \Delta x)\right)$
which converges much better (see Fig. 6).
In order to help resolving of the above dilemma one may examine effects of using of eq. (22) and eq. (25) with different number if iterations and different $\mathrm{D} x$. Results of such calculations are compared in Fig. 7. When viewing this figure one can see very strong effect of $D x$ to the formula (24) and its noticeable influence on eq. (22). Notice that initial transients response calculated with $\mathrm{D} x=4.5 \mathrm{~mm}$ is quite different when using eq. (22) and eq. (25). It remains significant for $\mathrm{D} x=0.045 \mathrm{~mm}$ (compare upper and lower subfigures), hence its value closer to 0.00045 seems to be adequate for eq. (25). The approximating formula (25) is also noticeably sensitive to the number of iteration, but tis effect is much stronger for the formula (22). Notice that calculations of $h_{q T L}(0, \mathrm{D} x)$ do not fit the formula (24) until very large $I_{\max }$ is taken ($I_{\max }=3600000$ was applied). The initial value in the central lower subfigure ($I_{\max }=3600, \mathrm{D} x=0.0045 \mathrm{~mm}$) is ca 3.6810^{4} instead of its actual value i.e. 0 (see eq.24), which is reachable with much larger $I_{\text {max }}$ (see bold point at $x=0.0045 \mathrm{~mm}$). It should be noticed that, in fact, the values for $x=0$ counts simply the iterations (the formula (22) does not converge), i.e. $h_{q T L}(0,0)=\frac{\lambda}{L}\left(1+2 I_{\max }\right)$. It yields ca. 4.610^{4} and 4.610^{7}, respectively (see values in lower left-right and right-right subfigures), that (according to eq. 24) may be viewed as averaged values over $\delta x=6.2510^{-2} \mathrm{~mm}$ and $\delta x=6.2510^{-5} \mathrm{~mm}$.

Nevertheless as the matter of fact, in practical simulations we need formulae for the heat streams averaged over a time interval Dt. Such a formula may be derived by integration of eq. (22), i.e.:
$h_{q T L}\left(t_{n}, x\right)=\frac{\lambda}{L}-\frac{2 \lambda L}{\Delta t \pi^{2} D} \sum_{i=1}^{\infty} \frac{1}{i^{2}} \cos \left(\frac{i \pi x}{L}\right)\left(\exp \left(-\frac{i^{2} \pi^{2} D t_{n}}{L^{2}}\right)-\exp \left(-\frac{i^{2} \pi^{2} D\left(t_{n}-\Delta t\right)}{L^{2}}\right)\right)$

It may be used directly to calculate $q(t, 0)$ with a lower $I_{\max }$, as the series in eq. (26) converges much better than in eq.(22) [9]). One may also employ the approximating formula (25) with $h_{T L}()$ averaged in the same way. Results of such calculations are compared in Figure 8.

It may be seen that this time the sensitivity of the both formulae to $\mathrm{D} x$ is much weaker, providing that $\mathrm{D} x<1 \mathrm{~mm}$. Results obtained with approximating formula and eq. (26) are similar (compare corresponding subfigures in Fig. 7 and 8). It should be noticed that calculation with eq. (26) are less time consuming than approximating one.

In Figure 9. the step response of the heat losses stream calculated in the discretized state-space - eqs. (8) (recursive model) is confronted with that produced by the analytical formula (26). A relatively small value $I \max =2000$ was taken and $\mathrm{D} t=1 \mathrm{~s}$

Figure 7. Step response of heat losses stream $q_{q}(t, 0)$, at very initial time section, calculated for the brick wall with approximating equation (27) (upper subfigures) and with the analytical formula (22) $h_{q T L}\left(t, x=\mathrm{D} x\right.$) (lower subfigures), reached with the number of iterations $I_{\max }=3600$ (left subfigures) and $I_{\max }=3600000$ (right subfigures). Results obtained for $i=150$ are also shown as point-lines, and for $i=300$ as dotted lines.

Figure 8. Step response of heat losses stream $q_{q}(t, 0)$, at very initial time section, averaged over the time sampling interval $\mathrm{D} t=1 \mathrm{~s}$, calculated for the brick wall with approximating equation (25) (upper subfigures) and the analytical formula (26) (lower subfigures) reached with the number of iterations $I_{\max }=3600$ (left subfigures) and $I_{\max }=3600000$ (right subfigures). Results obtained for $\mathrm{i}=150$ are also shown as point-lines, and for $\mathrm{i}=300$ - dotted lines

Figure 9. Comparison of step response of heat losses stream $q_{q}(t, 0)$, at very initial time section, calculated in the discretized state-space model - eqs.(8) with two different D x (left and central subfigures), and by employing the analytical formula (26) for $\mathrm{x}=0$ (right subfigure), calculated for the brick wall. In the right subfigure results obtained for $\mathrm{i}=150$ are shown as point-lines, and for $\mathrm{i}=300$ - dotted lines
the same as in Fig.8. The recursive model was applied with $\mathrm{D} x$ $=0.45 \mathrm{~mm}$ and $\mathrm{D} x=0.225 \mathrm{~mm}$. The plots shown in left and central subfigures reveal significant modelling errors being an effect of too large $\mathrm{D} t$ value ($\mathrm{D} t / \mathrm{D} x$ ratio is too large, so smaller values of $\mathrm{D} x$ are unacceptable when $\mathrm{D} t=1 \mathrm{~s}-$ see also right subfigures in Fig. 3).

The above picture gives evidence for advantages of the analytical formula (26), when compared to the recursive model. Thus, for homogeneous partitions it may be recommended as the appropriate formula enabling for calculation the heat losses step response, to be stored and used as the basis of convolution model (21) in simulation procedures.

So far as the diffusion coefficient D and the thermal conductivity coefficient λ are constant across the wall, the equations $(11,13,26)$ enable us to calculate the temperature T and cheat flow q at any point x and at any time t_{n} with no information on their values at neighboring sites $x-\partial x, x+\partial x$.

Let as recall the realistic case, when the wall consists of two layers: the left layer is of L_{L} thickness, D_{L} diffusion coefficient and λ_{L} thermal conductivity coefficient, while these parameters for the right layer are L_{R}, D_{R} and l_{R} (see Table 2). In this case the cheat transfer process formulae cannot be derived in so simple way, as eq.(11) and further. It is possible indeed to derive a function $f_{T h}(x)$ in form of the Fourier series, compensating the steady-state x-profile of temperature, like eq. (12), i.e.:

$$
\begin{equation*}
f_{T h}(x)=\frac{2}{\pi} \sum_{i=1}^{\infty} \frac{1}{i} \sin \left(\frac{i \pi x}{L}\right)\left(1+\frac{L}{\pi} \frac{\left(b_{L}-b_{R}\right)}{i} \sin \left(\frac{i \pi L_{L}}{L}\right)\right) \tag{27}
\end{equation*}
$$

where b_{L} and b_{R} denote slope of the steady-state profile in the left and right layer (see Fig. 1):
$b_{L} \stackrel{\text { def }}{=}-\frac{\lambda_{R}}{\lambda_{L} L_{R}+\lambda_{R} L_{L}}, \quad b_{R} \xlongequal{\text { def }}-\frac{\lambda_{L}}{\lambda_{L} L_{R}+\lambda_{R} L_{L}}$

However, original attempts to derive simple formulae for exponential dumping factors, like in eq. (11), fulfilling the eq. (4) at the interlayer border point $\left(x=x_{b} \xlongequal{\text { def }} L_{L}\right)$ did not succeed. Hence, in the sequel a semi-analytical approach is proposed, exploiting the superposition law for effects of $T\left(t, x_{b}\right)$ on $T\left(t, x \neq x_{b}\right)$ and $q(t$, $x \neq x_{b}$).

Let us take hypothetically that $T_{b} T\left(0, x_{b}\right)$ may be changed by $1^{\circ} \mathrm{C}$. The response of $T\left(t, x<x_{b}\right)$ and $T\left(t, x>x_{b}\right)$ to such excitation, i.e. the step response model $h_{T b L}$ and $h_{T b R}$) may be derived by using the same trick as in eq. (11), but related separately to the left and right hand side of x_{b} (or more generally - to left (vs. x_{b}) and right homogeneous sections of the wall):
$h_{T b R}(t, x)=1-\left(\frac{x-x_{b}}{L_{R}}\right)-\frac{2}{\pi} \sum_{i=1}^{\infty} \frac{1}{i} \sin \left(i \pi \frac{\left(x-x_{b}\right)}{L_{R}}\right) \exp \left(-\frac{i^{2} \pi^{2} D_{R} t}{L_{R}^{2}}\right), x \geq x_{b}$
$h_{T b L}(t, x)=\frac{x}{L_{L}}-\frac{2}{\pi} \sum_{i=1}^{\infty} \frac{1}{i} \sin \left(i \pi\left(1-\frac{x}{L_{L}}\right)\right) \exp \left(-\frac{i^{2} \pi^{2} L_{L} t}{L_{L}^{2}}\right), x<x_{b}$

Similarly, the step response of the heat flow may be written by proper modifications of eq. (26):
$h_{q T b R}\left(t_{n}, x \geq x_{b}\right)=\frac{\lambda_{R}}{\Delta t}\left(\frac{\Delta t}{L_{R}}-\frac{2 L_{R}}{\pi^{2} D_{R}} \sum_{i=1}^{\infty} \frac{1}{i^{2}} \cos \left(i \pi \frac{\left(x-x_{b}\right)}{L_{R}}\right)\left(\exp \left(-\frac{i^{2} \pi^{2} D_{2} t_{n}}{L_{R}^{2}}\right)-\exp \left(-\frac{i^{2} \pi^{2} D_{R} t_{n-1}}{L_{R}^{2}}\right)\right)\right]$
$h_{q T b L}\left(t_{n}, x<x_{b}\right)=-\frac{\lambda_{L}}{\Delta t}\left[\frac{\Delta t}{L_{L}}-\frac{2 L_{L}}{\pi^{2} D_{L}} \sum_{i=1}^{\infty} \frac{-1^{i}}{i^{2}} \cos \left(\frac{i \pi x}{L_{L}}\right)\left(\exp \left(-\frac{i^{2} \pi^{2} D_{L} t_{n}}{L_{L}^{2}}\right)-\exp \left(-\frac{i^{2} \pi^{2} D_{L} t_{n-1}}{L_{L}^{2}}\right)\right)\right]$

The effect of continuous changes of $T_{b}(t)$ on $T\left(t, x \neq x_{o}\right)$ may be calculated with the convolution model (21) for a fixed x (irrespective its effect at another x), e.g. for $x>x_{g}$ we have:
$T\left(t, x>x_{b}\right)=\int_{\tau=0}^{\infty} h_{T b R}(\tau, x) \frac{d T_{b}(t-\tau)}{d t} d \tau$

In a typical real heat conduction process $T_{b}(t)$ is produced by changes in a border temperature, say $T_{L}(\mathrm{t})$. Thus, if $T_{b}(t)$ is the response to the unit step change in T_{L} the following equality is held:
$h_{T L}\left(t, x>x_{b}\right)=\int_{\tau=0}^{\infty} h_{T b R}(\tau, x) \frac{d T_{b}(t-\tau)}{d t} d \tau=1-\frac{x}{L}-\frac{2}{\pi} \sum_{i=1}^{\infty} \frac{1}{i} \sin \left(\frac{i \pi x}{L}\right) \exp \left(-\frac{i \pi^{2} D t}{L^{2}}\right)$

In a similar way one may express the step response $h_{T L}(t$, $x<x_{g}$). However, in this case a dual impact of $\mathrm{D} T_{L}$ on $h_{T L}(\mathrm{t}, x)$ must be taken into account. First it is the direct effect of the left side disturbance $\mathrm{D} T_{L}$ expressed by the step-response formula denoted as $h_{T L T}(t, x)$:
$h_{T L T}\left(t, x<x_{g}\right)=1-\frac{x}{L_{L}}-\frac{2}{\pi} \sum_{i=1}^{\infty} \frac{1}{i} \sin \left(i \pi \frac{x}{L_{L}}\right) \exp \left(-\frac{i^{2} \pi^{2} D_{L} t}{L_{L}^{2}}\right), x<x_{b}$
and then a back effect of $d T_{g}(t) / d t$ expressed by $h_{T b L}(t, x)$ and used in the convolution formula like in eq. (33). The superposition of both these effect leads to the formula:
$h_{T L}\left(t, x<x_{b}\right)=h_{T L T}\left(t, x<x_{g}\right)+\int_{\tau=0}^{\infty} h_{T b L}(\tau, x) \frac{d T_{b}(t-\tau)}{d t} d \tau$
To check the formulae $(34,36)$ accuracy we made numerical calculations for eq. (34), assuming the homogeneous wall ($D_{R}=$ $\left.D_{L}=D\right)$, by employing the analytical formula for $T_{b}(t)=h_{T L}\left(t, x_{\mathrm{b}}\right)$, which is:

$$
\begin{equation*}
T_{b}(t)=h_{T L}\left(t, L_{L}\right)=\frac{L_{R}}{L}-\frac{2}{\pi} \sum_{i=1}^{\infty} \frac{1}{i} \sin \left(\frac{i \pi L_{L}}{L}\right) \exp \left(-\frac{i^{2} \pi^{2} D t}{L^{2}}\right) \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\text { and: } \quad \frac{d T_{b}(t)}{d t}=\frac{2 \pi D}{L^{2}} \sum_{i=1}^{\infty} i * \sin \left(\frac{i \pi L_{L}}{L}\right) \exp \left(-\frac{i^{2} \pi^{2} D t}{L^{2}}\right) \tag{38}
\end{equation*}
$$

One may proof that:

$$
\begin{equation*}
\int_{\tau=0}^{\infty} h_{T b R}(\tau, x) \frac{d T_{b}(t-\tau)}{d t} d \tau=\frac{L-x}{L_{R}} T_{b}-I_{2} \tag{39}
\end{equation*}
$$

Here I_{2} stands for the following integral:

$$
\begin{equation*}
I_{2} \xlongequal{\frac{\operatorname{des}}{2}} \frac{2}{\pi} \frac{L_{R}}{L} \int_{\tau=0}^{\infty} \sum_{j=1}^{\infty} \frac{1}{j} \sin \left(j \pi \frac{\left(x-L_{L}\right)}{L_{R}}\right) \exp \left(-\frac{j^{2} \pi^{2} D_{R} \tau}{L_{R}^{2}}\right) \frac{d T_{b}(t-\tau)}{d t} d \tau \tag{40}
\end{equation*}
$$

$$
\begin{align*}
& I_{2}=\frac{4}{\pi^{2}} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \frac{11}{i j \frac{1}{j}} \sin \left(j \pi \frac{\left(x-L L_{L}\right)}{L_{R}}\right) \sin \left(\frac{i \pi L_{L}}{L}\right)\left(\exp \left(-(1-v) \frac{i^{2} \pi^{2} D t}{L^{2}}\right)-\exp \left(-\frac{i^{2} \pi^{2} D t}{L^{2}}\right)\right) \tag{41}\\
& \text { where } \quad v \stackrel{\operatorname{dos}}{=}\left(1-\frac{j^{2} L^{2} D_{R}}{i^{2} L_{R}^{2} D_{L}}\right) \tag{42}
\end{align*}
$$

The above calculations faced numerical problems, as in many components of the series (41) vis very close to zero, although there exists a finite limit. It was found that in the case where substitution solves the problem.
In a similar way the heat-stream step response $h_{q T b q L}\left(t, x<x_{b}\right)$ and $h_{q T b q R}\left(t, x>x_{b}\right)$ may be derived involving $h_{q T b L}(t, x)$ and $h_{q T L L}(t$, x), respectively, in the convolution like in eqs. $(33,36)$ and completed with $h_{q T L q L}(t, x)$ representing the direct effect of $\mathrm{D} T_{L}$ to $h_{q T b q L}\left(t, x<x_{b}\right)-$ see eq. (32):

Through numerous calculations, it has been shown that the formulas $(34,36)$ give sufficiently good results with errors of the order of 10^{-6}, when confronted with effects of analytical formula (11). Interestingly, it was stated that the contribution of the integral I_{2} to the value of $h_{T()}$ is in the order of 10^{-3}, that is shown in Fig. 10 (see upper-right plot). Thus, in rough estimates, it can be taken that

$$
\begin{equation*}
T\left(t, x>x_{g}\right) \approx \frac{L-x}{L_{R}} T_{b}(t) \text { and } T\left(t, x<x_{g}\right) \approx \frac{L-x}{L_{L}} T_{b}(t) \tag{44}
\end{equation*}
$$

Now, let us recall the heterogeneous wall, for which the eq. (37) is not applicable so that a new formula for $T_{b}(t)$ must be found satisfying eq. (4). In the border layer of the following energy balance equation is valid:
$\frac{\partial x}{2}\left(\rho_{L} c_{L}+\rho_{R} c_{R}\right) \frac{d T_{b}(t)}{d t}=\lambda_{L} \frac{\partial T\left(t, L_{L}-\frac{\partial x}{2}\right)}{\partial x}-\lambda_{R} \frac{\partial T\left(t, L_{L} \frac{\partial x}{2}\right)}{\partial x}$
Thus we have to express the derivatives $\lambda_{R} \frac{\partial T}{\partial x}, \lambda_{L} \frac{\partial T}{\partial x}$ (i.e. the input and output heat streams) as affected separately: first directly by change $\mathrm{D} T_{L}=1^{\circ} \mathrm{C}$ and back - by continuous changes in T_{b} due to $\mathrm{D} T_{L}$, with the convolution formula (21), like in eqs. $(33,36)$ for temperature calculations.
No analytical solver was found for $T_{b}(t)$ based on eq.(45), hence the step-response $h_{T T b}(t)$ to $\mathrm{D} T_{L}=1^{\circ} \mathrm{C}$ must be solved in a numerical way for the sequence of discrete time values t_{n} with a fixed $\mathrm{D} t$ and for an appropriately small $\mathrm{D} x$. Having in mind the pictures shown in Figs. 7 and 8, it should be done by employing the analytical formulae for the heat streams averaged over $\mathrm{D} t$ interval: $h_{q T L q L}\left(t, L_{L}\right.$-D $\left.x / 2\right)-$ see eq. (43), $h_{q T b R}(t, \mathrm{D} x / 2)$ - eq. (31) and, $h_{q T b L}\left(t, L_{L}\right.$ - $\mathrm{D} x / 2$) - eq. (32). The equation (45) discretized in space and time produces the step response model (notation will be used in sequel for better readability). The initial conditions are as follows:

$$
\begin{equation*}
\Delta T_{b}(0)=0 ; \quad h_{\text {qTLLal }}\left(0, L_{L}-\frac{\partial x}{2}\right)=0 ; \quad h_{\text {qTLL }}\left(0, L_{L}-\frac{\partial x}{2}\right)=0 ; \quad h_{\text {qTbR }}\left(0, L_{L}+\frac{\partial x}{2}\right)=0 \tag{46}
\end{equation*}
$$

Figure 10. Temperature and heat stream time profiles calculated for $x=0.4$ using eqs.(37-43), confronted with results obtained using analytical formulae (11) and (22). Correction shown in the upper-left subfigure is produced by I_{2} in eq.(39). Large error for $q(0, x)$ in the lower-right plot - point line - is produced by eq.(22)

The formula for $h_{T d T b}\left(t_{n}\right) \stackrel{\text { def }}{=} \Delta T_{b}\left(t_{n}\right)$ derived from eq. (45) may be written shortly in the following form:

$$
\begin{equation*}
\Delta T_{b}\left(t_{n}\right)=\frac{2 \Delta t}{\left(\rho_{L} c_{L}+\rho_{R} c_{R}\right) \Delta x}\left(h_{q T L q L}\left(t, L_{L}-\frac{\Delta x}{2}\right)-\sum_{m=1}^{n} h_{q T b T b}\left(t_{m}, L_{L}-\frac{\Delta x}{2}\right) \Delta T_{b}\left(t_{n-m}\right)\right) \tag{47}
\end{equation*}
$$

where $h_{\text {qTbтb }}(\square)$ denotes the cumulated feed-back effect of $T_{b}()$ to itself via heat transfer:
$h_{q T b T b}\left(\tau_{m}, L_{L}-\frac{\partial x}{2}\right)=h_{q T b R}\left(t_{n}, L_{L}+\frac{\Delta x}{2}\right)-h_{q T b L}\left(t_{n}, L_{L}-\frac{\Delta x}{2}\right)$

Let $D_{L R}$ and $D_{R L}$ denote thermal diffusion coefficients for the left and right halves of the layer:
$D_{L R} \stackrel{\text { def }}{=} \frac{2 \lambda_{L}}{\left(\rho_{L} c_{L}+\rho_{R} c_{R}\right)} \quad D_{R L} \stackrel{\text { der }}{=} \frac{2 \lambda_{R}}{\left(\rho_{L} c_{L}+\rho_{R} c_{R}\right)} \quad D_{b} \stackrel{\text { def }}{=} \frac{L_{L R}}{L_{L}}+\frac{D_{R L}}{L_{R}}=\frac{2}{L_{R} L_{L}} \frac{\lambda_{L} L_{R}+\lambda_{R} L_{L}}{\left(\rho_{L} c_{L}+\rho_{R} c_{R}\right)}$
and $S_{q T L q L}\left(t, L_{L}-\mathrm{D} x / 2\right), S_{q T b L}\left(t, L_{L}-\mathrm{D} x / 2\right) S_{q T b R}\left(t, L_{L}+\mathrm{D} x / 2\right)$ denote the series in $h_{q T L q L}\left(t, L_{L}-\mathrm{D} x / 2\right), h_{q T b L}\left(t, L_{L}-\mathrm{D} x / 2\right)$ and $h_{q T b R}(t$, $\left.L_{L}+\mathrm{D} x / 2\right)$ in eqs. $(31,32,43)$, respectively:
$S_{q T b L}\left(t_{n}, L_{L}-\frac{\Delta x}{2}\right)=-\frac{2 L_{L}}{\pi^{2} D_{L}} \sum_{i=1}^{\infty} \frac{1}{i^{2}} \cos \left(i \pi \frac{\Delta x}{2 L_{L}}\right)\left(\exp \left(-\frac{i^{2} \pi^{2} L_{L} t_{n}}{L_{L}^{2}}\right)-\exp \left(-\frac{i^{2} \pi^{2} D_{L} t_{n-1}}{L_{L}^{2}}\right)\right)$
$\left.S_{q T b R}\left(t_{n} L_{R}+\frac{\Delta x}{2}\right)=-\frac{2 L_{R}}{\pi^{2} D_{R}} \sum_{i=1}^{\infty} \frac{1}{i_{i}} \cos \left(i \pi \frac{\Delta x}{2 L_{R}}\right)\left(\exp -\frac{i^{2} \pi^{2} D_{R} t_{n}}{L_{R}^{2}}\right)-\exp \left(-\frac{i^{2} \pi^{2} D_{R} t_{n-1}}{L_{R}^{2}}\right)\right)$
$S_{q T L q L}\left(t_{n}, L_{L}-\frac{\Delta x}{2}\right)=-\frac{2 L_{L}}{\pi^{2} D_{L}} \sum_{i=1}^{\infty} \frac{-1^{i}}{i^{2}} \cos \left(i \pi \frac{\Delta x}{2 L_{L}}\right)\left(\exp \left(-\frac{i^{2} \pi^{2} D_{L} t_{n}}{L_{L}^{2}}\right)-\exp \left(-\frac{i^{2} \pi^{2} D_{L} t_{n-1}}{L_{L}^{2}}\right)\right)$
Substitution of eqs. $(50-52)$ to eq. $(48,47)$ and a simple transformation leads to the required formula for the step -response $h_{T T b}\left(t_{n}\right)$, for $n=1,2, \ldots$:

$$
\begin{align*}
\Delta T_{b}\left(t_{n}\right)= & \frac{D_{L R}}{\Delta x}\left(\frac{\Delta t}{L_{L}}-S_{q T b T b}\left(t_{n}, L_{L}-\frac{\Delta x}{2}\right)\right)-\frac{D_{b}}{\Delta x} h_{T T b}\left(t_{n-1}\right)+ \\
& -\frac{1}{\Delta x} \sum_{m=1}^{n}\left(D_{L R} S_{q T b L}\left(t_{n}, L_{L}-\frac{\Delta x}{2}\right)+D_{R L} S_{q T b R}\left(t_{m}, L_{L}+\frac{\Delta x}{2}\right)\right) \Delta T_{b}\left(t_{n-m}\right) \tag{53}
\end{align*}
$$

and finally:
$h_{T T b}\left(t_{0}=0\right)=0 ; \quad h_{T T b}\left(t_{n}\right)=h_{T T b}\left(t_{n-1}\right)+\Delta T_{b}\left(t_{n}\right)$

Notice that all of the expressions (50-53) must be calculated for x, where their convergence is weak, thus numerical problems may be expected.

In order to evaluate the formula (53) accuracy we have applied it to the homogeneous brick-wall (see Table 2), and the series (denotes as $T_{b} \mathrm{n}\left(t_{n}\right)$ - numerical) obtained in this way was confronted with that calculated using the analytical formula (37) (denotes as $T_{b} \mathrm{a}\left(t_{n}\right)$ - analytical). The results are shown in Fig.11. One can see in this figure that the accuracy of the model (53) is very good (maximum relative error of $T_{b} \mathrm{n}\left(t_{n}\right)$ is less than 0.03%). However, it should be emphasized that the achievement of such precision requires the use of very low values for $\mathrm{D} x=5^{*} 10^{-6} \mathrm{~L}[\mathrm{~m}]$, rather short sampling (and averaging) interval $\mathrm{D} t=1 \mathrm{~s}$, and rather large number of components in the series $(50-52)\left(I_{\max }=4000\right)$. Especially, effect of $\mathrm{D} x$ is very significant. It has been found that $\mathrm{D} x=1 * 10^{-4} L$ already gives errors of the order of 1%, while $\mathrm{D} x$ $=1 * 10^{-6} L$ leads to numerical instability of eq. $(53,53)$. Large $I_{\max }$ makes the calculation time consuming, but we need to calculate the series $T_{b} \mathrm{n}\left(t_{n}\right)$ only once, and it may be then used in multiple simulations as the convolution model. The left subfigure in Fig. 11 illustrates contribution of main components of eq.(53) to the $\mathrm{D} T_{b}$, i.e. $\mathrm{D} T_{b L}$ - effect of the left (original) excitation $T_{L}=1^{\circ} \mathrm{C}$ and $\mathrm{D} T_{b L}$ - feed-back effect of $T_{b}(t)$.

Figure 11. Effects of applying the semi-analytical formula (53) to the homogeneous wall, compared with the temperature $T_{b}(t)$ profile obtained by using the analytical formula (37). Heat streams ($50-52$) calculated with $\mathrm{D} x=5^{*} 10^{-6} L[\mathrm{~m}]$, averaged over $\mathrm{D} t=1 \mathrm{~s}$. The modeling errors shown in left subfigures. Contribution of components of eq.(53) is shown in the right subfigure (dotted line - effect of the convolution term in eq. (53)

Figure 12 illustrate differences in dynamics of heat streams involved in the energy balance equation (45).

Figure 12. Differences in dynamics of heat streams $q_{\text {TTb }}(t)=h_{q T b T b}-$ see eq.(48), and $q_{T L}(t)=h_{q T L q L}-$ see eq.(43), going to the layer of $x=L_{L}$ due to the step response of $T_{b}(t)-$ (left subfigure) and from the original excitation $\mathrm{D} T_{L}=1^{\circ} \mathrm{C}$ (right subfigure). Calculations made for the homogeneous wall

Now, there are no more obstacles to use the formulae $(53,54)$ to calculate the step response of T_{b}, to the unit step change of T_{L}, i.e. $h_{T T b}\left(t, L_{L}\right)=T_{b}(t)$, for a heterogeneous two-layer partition, as it needs only proper values for $D_{L,} D_{R}, \lambda_{L}$ and l_{R} to be taken.

Results of such calculations, made for the wall characterized in Table 2, and treated before with the state-space model (7), are presented in Fig. 13 and Fig. 14.

Finally, we may derive the most demanded semi-analytical formula for the step response of heat losses stream to the unit step change $\mathrm{D} T_{b}=1^{\circ} \mathrm{C}$, using the approach as in eq. (46), and employing the step response $h_{T d T b}(t)=\mathrm{D} T_{b}(\mathrm{t})$ calculated once with eq. (53) and stored for the considered wall. As in the eqs. $(42,47)$, by virtue of superposition law the following equation may be written:
$h_{q T L 0}\left(t_{n}\right)=h_{q T L q L}\left(t_{n}, 0\right)-\sum_{m=1}^{n} h_{q T b L}\left(t_{m}, 0\right) \Delta T_{b}\left(t_{n-m}\right)$

The step responses $h_{q T L q L}\left(t_{n}, 0\right)$ and $h_{q T b L}\left(t_{n}, 0\right)$ may be calculated once for $n=1, \ldots n_{\max }$, (due to causality $h_{q T L q L}(0,0) \equiv 0$ and $h_{q T b L}(0,0) \equiv 0$), by using the formulae (43) and (32) with $x=0$:
$h_{q T L q L}(t, 0)=\frac{\lambda_{L}}{\Delta t}\left[\frac{\Delta t}{L_{L}}-\frac{2 L_{L}}{\pi^{2} D_{L}} \sum_{i=1}^{\infty} \frac{1}{i^{2}}\left(\exp \left(-\frac{i^{2} \pi^{2} D_{L} t_{n}}{L_{L}^{2}}\right)-\exp \left(-\frac{i^{2} \pi^{2} D_{L} t_{n-1}}{L_{L}^{2}}\right)\right)\right]$
$h_{q T b L}\left(t_{n}, 0\right)=-\frac{\lambda_{L}}{\Delta t}\left[\frac{\Delta t}{L_{L}}-\frac{2 L_{L}}{\pi^{2} D_{L}} \sum_{i=1}^{\infty} \frac{-1^{i}}{i^{2}}\left(\exp \left(-\frac{i^{2} \pi^{2} D_{2} t_{n}}{L_{L}^{2}}\right)-\exp \left(-\frac{i^{2} \pi^{2} D_{L} t_{n-1}}{L_{L}^{2}}\right)\right)\right]$

In the similar way one can derive the step response of $\mathrm{D} T_{b}$ to the unit step change of the right side temperature $\mathrm{D} T_{R}=1^{\circ} \mathrm{C}$ (denotes as - see eqs. (46-53)), and then derive the formula like

Figure 13. Temperature $T_{b}(t)$ profile obtained by using the semi-analytical formula (53), calculated for the two-layer wall (brick and isolation) with the interlayer border at $x=L_{L}=0.3 \mathrm{~m}$ (see Table 2 for further parameters). Heat streams ($50-52$) calculated with $\mathrm{D} x=5^{*} 10^{-6} L[\mathrm{~m}]$, averaged over $\mathrm{D} t=1 \mathrm{~s}$. Contribution of components of eq.(53) is shown in the right subfigure (dotted line - effect of the convolution term in eq.53)

$h_{q T R 0}\left(t_{n}\right)=-\sum_{m=1}^{n} h_{q T b L}\left(t_{m}, 0\right) h_{T R d T b}\left(t_{n-m}\right)$
The series and calculated ones for a considered wall constitute the complete model for heat losses $q_{i}\left(t_{n}\right)$, which may be exploited in any simulations by using the convolution formula:

$$
\begin{equation*}
q_{i}\left(t_{n}\right)=\sum_{m=1}^{n}\left(h_{q T L 0}\left(t_{m}\right) \Delta T_{L}\left(t_{n-m}\right)+h_{q T R 0}\left(t_{m}\right) \Delta T_{R}\left(t_{n-m}\right)\right) \tag{59}
\end{equation*}
$$

Effects of calculation of the step response with eq. (55) (index a) compared to the step response of heat losses obtained by applying the state-space model (8) (index n) with $\mathrm{D} x=\left\{0.003,10^{-3} \mathrm{~L}\right.$, $\left.5^{*} 10^{-4} L\right\}$ and $\mathrm{D} t=0.1 \mathrm{~s}$ are shown in Fig. 15 (effects of eq. 8 were averaged over $\mathrm{D} t=1 \mathrm{~s}$, like in eq. 55). It may be seen that er-
(55) for step response of heat losses at $\mathrm{x}=0$ to $\mathrm{D} T_{R}$ (in this case it depends only on $\mathrm{D} T_{b}$):

Figure 14. Differences in dynamics of heat streams $q_{\text {Tть }}(t)=h_{q \text { TbTb }}$ - see eq.(48), and $q_{T L}(t)=h_{q T L Q L}-$ see eq.(43), calculated for the two layer wall (see Figs.12, 13 for more explanations)

Figure 15. Comparison of heat losses step response at an initial time section, calculated with the model (55) - point-lines and by employing the discretized state-space model (8). - dotted lines
rors of eq. (8) are significant, and they a minimal for $\mathrm{D} x=10^{-3 /}$ $L=0.45 \mathrm{~mm}$. Larger $\mathrm{D} t$ and $\mathrm{D} x$ lead to much higher errors, but for the lower $\mathrm{D} x$ the relation $\mathrm{D} t / \mathrm{D} x$ is too large, that produces numerical errors. The small $\mathrm{D} t$ makes the model (8) c.a. twice more time consuming then the formula (58).

Conclusions

Analytical formulae for heat transfer available in literature [7, 8] make possible calculation of step response of temperature and heat losses for any homogenous building partition, that may be then directly applied in simulation instead of state space (recursive) model. In the paper semi-analytical formulae was derived for two-layer walls (typical building partitions), which was found as more accurate and less time-consuming then the statespace model. Hence, it may be recommended for real-time simulations demanded in modern heating control systems. Moreover, the proposed model may be used to check accuracy of simplified calculations with the state-space formulae, and to adjust discretization parameters $\mathrm{D} t$ and $\mathrm{D} x$.

Acknowledgments

All calculations and figures were performed by using MATLAB 7.8.9 (R2009a) platform.

References

1. $\mathrm{http} / / \mathrm{www}$. purmo.com $\% 2 \mathrm{f}$ docs $\% 2$ poradnik-purmo-nowa--metoda-obliczania, (last access 23.05.209)
2. PN-EN ISO 6946:2008 - Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metody obliczania
3. Strzeszewski M, Wereszczyński P. Norma PN-EN 12831. Nowa metoda obliczania projektowego obciążenia cieplnego. Poradnik. Warszawa: Rettig Heating Sp. z o.o.; 2009.
4. Duda JT. Modele matematyczne, struktury i algorytmy nadrzędnego sterowania komputerowego. Kraków: Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH; 2003.
5. Camacho EF, Bordons C. Model Predictive Control. Springer Verlag, London Limited; 2004.
6. http://www.pg.gda.pl/~krogu/Wspolczynniki_przewodzenia_ciepla.pdf (last access 23.05.2019)
7. Grzywna ZJ, Strzelewicz A. Opis matematyczny i analiza transportu masy gazów i par przez membrany polimerowe lite, czyste składniki i mieszaniny gazów. In: Membrany teoria i praktyka, Zeszyt III, Wykłady monograficzne i specjalistyczne, Toruń 2009.
8. Crank J. The Mathematics of Diffusion. Oxford University Press; 1975.
9. Wikipedia - key-words: functional series, Fourier transforms (last access May 2019)

[^0]: *Corresponding author: jdu@agh.edu.pl

