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Introduction

Stabilization of selected process variables by regulators is the 
basic task of the control system. Such variables are called the 
output vector of the system and in most cases, they are meas-
ured by sensors and transducers and are fed to output regulators 
(Programmable Logic Controllers PLC) working in feedback 
that produce a control signals. However, because of the high or-
der of the system in the input-output path as well as the process 
disturbances, this task is not always as perfect as technologist 
would expect. In common approach, the real physical systems 
are approximated by the linear time invariant models (LTI) 
with lumped parameters. The high order of such a model is a 
consequence of the presence of n independent storage elements 
(energy, mass or momentum) in the structure of the system and 
depends on the choice of the physical variable, which is to be the 
output variable. Therefore, perfect stabilization of the level in 
the last tank placed in a series structure of four tanks while the 
control signal is the flow of the liquid to the first tank, is not an 
easy task Figure 1. 

It can be done more accurately when the computer receives 
current information about the all tank levels (the state variables) 

instead of the output, only, Figure 2. Then the control of the 
remaining levels is also possible and thus the output can be sta-
bilize more precisely and quickly.

Unfortunately, such full instrumentation is not always possi-
ble in industrial systems. Hence, the important question arise – 
is it possible to stabilize the level of any chosen tank, based on 
the measurement of the last one, only. The answer is positive 
if the system fulfil the observability condition and the special 
algorithm (device) for state reconstruction is used. This algo-
rithm is called the state observer and its structure is based on the 
differential model of the system, Figure 3.

In 1959 Rudolf Kalman (1930–2016) presented the theory 
of the optimal state filtration, for linear time invariant systems 
starting with zero state initial conditions. The observed system 
works in presence of input/output signal measurement noises 
of known covariance matrices. It enables designing of the fil-
ter differential equation with special optimal gain matrix. The 
filter estimates the vector state and minimizes the variance of 
the state estimation error (Linear Quadratic Filter, LQF). The 
first two publications on optimal state filtration were concerned 
to discrete systems [1, 2]. Two years later, Rudolf Kalman with 
Richard Bucy, have published this theory for the continuous 
system [3]. For the formulation of the filtration task and for the 
filter optimal solution finding, the stochastic processes as the 
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mathematical background were used. Since 1970s, this type of 
filtration is called a Kalman Filter method (KF).

In 1961 William Linvill (Stanford University) suggested to 
the PhD student David Luenberger, the use of Kalman filter dif-

ferential equation for the asymptotic estimation of the system 
state, working without any stochastic noises, which has been 
started however, with unknown and nonzero initial conditions. 
Observing input and output signals of the system such type of 

Figure 1. Stabilization of the measured output

Figure 2. Stabilization of the all tank levels by the state controller

Figure 3. Stabilization of any tank level by the output controller and the state observer
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the deterministic state observer could estimate the current state 
vector with asymptotic convergence of the estimate to the real 
state of the system, however, with an unknown rate. In 1963, Lu-
enberger defended in Stanford University a doctoral dissertation 
“Determining the State of Linear System with Observers of Low 
Dynamic Order”. The research results were published in [4]. 
Over the years, the simpler theory of Luenberger’s deterministic 
observer (LO) in full and reduced order versions has become 
more popular in automation and state observation applications, 
than the more advanced Kalman filtration theory. Sometimes 
even in some textbooks where Luenberger observer theory is 
described there is no reference to Kalman filter theory as the 
source idea. The main disadvantage of the use KF or LO for 
state estimation is the asymptotic convergence of the state esti-
mate and lack of the knowledge about the estimation error value. 
In the next paper (Part 2) we will present quite different on-line 
observation algorithms, which can reconstruct the exact value of 
the state vector, e.g. x(t0) at the moment t0, making calculation on 
time interval [t0, t0+T]. 

State observability condition in linear 
time invariant systems 

Let the linear model of homogeneous system be given,
   
   (1)

Where x(t) ϵ Rn, u(t) ϵ Rr and y(t) ϵ Rm , for ∀t ≥ 0 . The initial 
state x(0) is unknown x(0)=? 

The output signal y(t) is measured and is known. Unfortu-
nately dimension m < n and the matrix C is rectangular (less 
equations than unknown variables). Hence based on single 
measurement of output vector y(t1), the state vector x(t1) cannot 
be calculated. 

Standard formula for the output y(t) of the above LTI system is

( )     (0) Aty t C e x=    (2)

Multiplying the both sides of (2) by transposition of the suita-
ble matrix one can obtained

' '' ' ( )       (0) A t A t Ate C y t e C C e x=  (3)

Obtained matrix ''    A t Ate C C e  is square however, still sin-
gular for any t. 

Integration of (3) in interval [0, T] enables calculation of x(0) 
if and only if the square Gram matrix M0 is non-singular and 
the history of the output signal y(t) on this interval is known.

-1
0

0

'(0)   ( )  
T

A tx M e C y t dt′= ∫
 

(4)

where 0
0

'     
T

A t AtM e C C e dt′= ∫  (5)

Nonsingularity of M0 is the well-known necessary and suffi-
cient condition for the system, to be state observable. The equiv-
alent algebraic formula for the state observability has the form

-

 
  

 

o

n m

C
C A

rank Q rank n

C A

 
 
 = = 
 
  



, for 1 m n≤ ≤ (6)

From this equivalence, it is easy to see that for continuous 
systems the state observability does not depend on the time ob-
servation T.

The standard Kalman Filter formula used 
in control tasks

A stationary continuous system in the presence of input noise 
(or condition) and output noise of the signal is given. It is as-
sumed that an expected value (average) of the initial conditions 
are known or are zeros.

( ) ( ) ( ) ( )
( ) ( ) ( )

x t A x t Bu t w t
y t C x t v t

= + +
= +



, 
 0(0)  x x=

 (7)

The signals ( ), ( )w t v t  are white Gaussian noise with an 

average value zero: ( ){ } ( ){ }w t 0, v t 0E E= =  and 

the covariance matrices 0, 0, 0Q S R≥ ≥ >  ( 0R >  
to avoid the singularity of the task):

1 1 1
2 2 1 2

1 1 1

( ) ( ) ( )
( ) ( )  ( )

( ) ( ) ( )
T Tw t Q t S t

E w t v t t t
v t S t R t

δ
       = −          

The task is to find the optimal filter, which for t∀  will give 
the state estimate and will guarantee the best filtering of the 
noise of this state estimate ( )x t . The structure of the filter has 
to be a differential equation similar to the system model and ad-
ditionally an output measurement for the correction of filtering 
quality is used. 

 0( ) ( ) ( ) ( ) [ ( ) ( )], (0)x t A x t Bu t G t y t C x t x x= + + − =   (8)

Then the estimation error fulfills the differential equation

( ) ( ) [ ( ) ( )] ( ) [ ( ) ( )] ( ) ( ) ( ), (0) (0) (0) x t x t A x t x t G t C x t x t w t G t v t x x ε− = − − − + − − =



( )
( ) [ ( ) ] ( ) [ , ( )] , (0) (0) (0) 

( )
w t

t A G t C t I G t x x
v t

ε ε ε 
= − + − − = 

 
      (9)

If one assumes that matrix ( )G t  G=  is constant for 
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t  → ∞ , and denoting    –  F A GC=  and also assum-
ing that F will have eigenvalues with negative real parts, then 
the solution of the homogeneous equation error (9) (without the 
noise) will converge to zero. 

( ) (0) , lim ( ) 0  Ft

t
t e tε ε ε

→∞
= →

The final form of the Kalman filter is:

( ) ( ) ( ) ( ) ( )x t F x t Bu t G t y t= + +   (10)

The main question, however, is what is the form of ( )G t , 
which for each   t < ∞  would additionally guarantee the small-
est mean square error of the estimated state.

One can assume that initial conditions (0)x  are 
a random variable independent from ( )w t and ( )v t  
with mean value { }(0) (0)E x x=   and the variance 

0{[ (0) (0)][ (0) (0)] }TE x x x x Q− − =  .
Current estimation error is given by the equation 
( ) ( ) ( )t x t x tε = − .
Average error value and error variance matrix:

1 1 1 1 1{ ( )} ( ), {[ ( ) ( )][[ ( ) ( )] } ( )TE t t E t t t t P tε ε ε ε ε ε= − − =  

The matrix of the second order moments 
{ ( ) ( )} ( ) ( ) ( )T TE t t t t P tε ε ε ε= + 

.
The problem is to find a formula for the filter amplification 

matrix ( )G t , which will guarantee the smallest mean square 
error, i.e. the minimum of quality index for the given model

0 0, ,
min min { ( )  ( )}, { ( )  ( )} ( ) ( ) [ ( )]T T T

x G x G
J E t t E t t t t trace P tε ε ε ε ε ε= ⋅ ⋅ = + 

The first part of the last equation reaches the minimum for 
( ) 0tε = . This can be achieved by assuming (0) 0ε =  be-

cause the actual initial condition is known (0) (0)x x=  .
Then the error variance matrix equals:
 ( ) {  ( )  ( )}TP t E t tε ε= ⋅
Formula for J has the form: 

{ ( )  ( )} [ ( )]TJ E t t trace P tε ε= ⋅ =
The J performance index reaches the minimum for the opti-

mal matrix of amplification coefficients, which is non-stationary 
( )G t  and is expressed by the formula, [5]

1( ) [ ( ) ]TG t P t C S R−= ⋅ + ⋅

The square matrix ( )P t  satisfies Riccati nonlinear differen-
tial equation (11)

( ) ( ) ( ) ( ) ( )T TP t A P t P t A G t RG t Q= + − +  (11)

For the case of uncorrelated noise 0S = , the gain matrix 
G(t) and Riccati equation are: 

1( ) ( ) TG t P t C R−= ⋅ ⋅      (12)

1( ) ( ) ( ) ( ) ( )T T TP t A P t P t A P t C R C P t Q−= + − +  (13)

with the initial condition 0(0)P P= .
The solution of the Riccati differential equation is the ma-

trix ( )P t , giving a time variable gain matrix of the filter 
( ) [ ]G t n m× . The optimal Kalman filter is therefore a 

time-variant (non-stationary) filter. Assuming a positive defi-
nite (semi-definite) of (0)P  and the observability of the ma-
trix pair ( , )A C , the solution ( )P t  asymptotically tends 
to the only positively defined (semi-defined) constant matrix 

( ) [ ]P t n m× , for time t → ∞ . The method of solving Ric-
cati equation one can find in [6, 7].

Figure 4. The Riccati equation solution for matrix ( )P t

The constant matrix P is also a solution of the Algebraic Ric-
cati Equation (ARE), (14).

10 T T TAP PA PC R CP Q−= + − +   (14)

Using the constant matrix P one obtains a constant gain filter 
matrix G (time-invariant filter), which is for t < ∞ suboptimal, 
only. The Riccati equations one can solve off-line and use the 

( )G t  or G in the on-line real-time estimation problems.

Example 1.

Given LTI system of the second order (double integrator) with 
uncorrelated noises

[ ]

0 1 0 0
( ) ( ) ( ) ( )

0 0 1

( ) 2 0 ( ) ( )

x t x t u t w t

y t x t v t

γ
     

= + +     
     

= +



 

(15)

Figure 5. Observed system

The variance of the noise ( )w t  is denoted by Q, the variance 
of the noise ( )v t  by R r=  and the symmetric matrix P rep-
resents the variance of the error:

 P(t) 

P(0) 
t 

P 
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[ ] 1 2
1 2

1 2 4

0 00
0 ,

0  
Tp p

Q w P P
w p p

γ
γγ

    
= = = =    

     

The ARE equation has a form:

1

2
22 4 1 1 2

2 2
4 1 1 2 2

2
2 1 2

1
4 1 2 1

2 2 4
1 2

0

0 0 0 40
0 0  0 0

42 0
2

4 10 the solution has a form where   =
2

4 0

/ 2 / 2

/ 2

T TAP PA Q PC R CP

pp p p p p
p w r p p p

p p p r
r

wp p p p r
r r

p rw p
r

P

γ

β

β β γ

β βγ

β β

β β β

−= + + −

     
= + + −      

       
− = =

− = =

 =− = 


= 



1, Tr G PC R β
β

−
  

⋅ = =  
  

The state observer matrix F has the form:

0 1 2 0 2 1
0 0 2 0 2 0

F A GC β β
β β

     −= − = − =     −       
(16)

Characteristic polynomial and elements of matrix F depend 
on the noise stochastic properties

2

1,2

2   2 0

,

( ) ( ) ( ) ( ) ( ),

02 1( ) ( ) ( ) ( )
12 0

s s

s j

x t A GC x t Bu t Gy t

x t x t u t y t

β β

β β

β β
β β

+ + =

= − ±

= − + +

    −= + +    −     





  

(17)

For 1β =  the eigenvalues and the optimal form of the esti-
mator are: 12 1s j= − ± .

2 1 0 1
( ) ( ) ( ) ( )

2 0 1 1
x t x t u t y t

−     
= + +     −     



.  
(18)

In the Figure 7 one can see the quality of the state estimation 
for system (15) by the filter (18) under noisy measurement. In 
the Figure 8, one can see the quality of the state stabilization 
for (15) by the use of linear state controller LQR, which gen-
erates the control u(t) = -K x(t) (the gain K is optimal from the 
point of view of quadratic quality index) in the case of direct 
measurement of the system vector state x(t). The comparison of 
the quality of the state stabilization for (15) by the use of linear 
state controller LQR and the Kalman Filter (18) in the case that 
the state is not available for measurement, under noisy measure-
ment, is visible on the Figure 9.

Luenberger deterministic state observer

Given controlled undisturbed system with unknown initial 
condition

( ) ( )

0( ) ( ) ( ),            x(0) = x
( ) ( )

,  ( ) , ,  n r m

x t Ax t Bu t
y t Cx t
x t R u t R y t R m n

= +
=
∈ ∈ ∈ <



The asymptotic deterministic and stationary (matrix G con-
stant) state observer has the form of a differential equation like 
in KF (10). 

0( ) ( ) ( ) ( ), (0)  x t F x t Bu t G y t x x= + + =

Its solution ( )x t , starting from the arbitrarily chosen initial 
state estimate (0)x , follows with the real state ( )x t  and con-
verges to it asymptotically if the matrix F is asymptotically sta-
ble and equal to F A GC= − . The estimation error decreas-
es to zero, but its value is not known.

lim ( ) 0 
t

tε
→∞

→

The observer G gain coefficients are selected by the F matrix 
eigenvalues location method. If the system is observable, then 
for chosen eigenvalues appropriate coefficients of matrix G can 
always be found. General analytical formula for the MISO sys-
tem (scalar Ry ∈ ) and the column matrix of gain coefficients 

[ 1]G n× , gives the Ackermann formula [8].
Denoting desired form of the characteristic polynomial of the 

observer matrix F with the given eigenvalues si, the given coef-
ficients αi of this polynomial can also be obtained.

1
1 2 1 1 0( ) ( )( ) ( ) .....n n

n ns sI A GC s s s s s s s s sα α α α−
−= − + = − − ⋅⋅⋅ − = + + +

The corresponding form of the matrix polynomial (matrix A 
instead of s) has the form:

1
1 1 0( ) .....n n

nA A A A Iα α α α−
−= + + +

This form is used in the Ackermann formula for matrix co-
efficients ( ) [ 1]G t n×  of a full rank observer, with the use of 
the observability matrix QO, (6):

1

1

0
0

( ) ,  

1n

C
CA

G A

CA

α

−

−

   
   
   =
   
   
   

 

   

(19)

Example 2.

For the deterministic second order LTI system, similar to (15) 
one should find full order Luenberger observers.

Figure 6. Observable 2nd rank system
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[ ]0 1 0
; ; 2, 0 ,

0 0 1
A B C   

= = =   
   

The gain matrix G of the second order observer and the state 
matrix F have the form:

1 1 2
1 2

2 2

2
1,2 1 1 2

2 1
; ; det( ) 2 2 0

2 0

2

g g
G F A GC sI F s g s g

g g

s g g g

−   
= = − = − = + + =   −   

= − ± −

For assumed 1 22 i 4s s= − = −  from the above formulas, 

1 23 i 4g g= =  are obtained. The same values one can find 
from the Ackerman formula. The observer has the form:

6 1 0 3
( ) ( ) ( ) ( )

8 0 1 4
x t x t u t y t

−     
= + +     −     



  
(20)

Equivalent Luenberger observer, with reduced first order can 
have an example form 

( ) 2 ( ) ( ) 2 ( )
0 0.5

( ) ( ) ( )
1 1

z t z t u t y t

x t z t y t

= − + −

   
= +   

   



.

Figure 7. Estimation of the state of (15) 

Figure 8. Stabilization of system with LQR with the noise by Kalman Filter. 
and direct measurement of the state.
 x1(t) and x2(t) (without the observer) 

Figure 9. Stabilization with LQR and KF, with measurement noise

Discrete versions of the Kalman Filter 

In many applications of computer control systems very often 
the plant is modeled by the discrete difference state equations. 
Below two versions of discrete Kalman Filter will be quoted for 
more general case of time-depended system matrices (21) and 
non-unite gain matrix Wi of the control noise, however, this time 
the noises w and v will be uncorrelated (the covariance matrix 
S = 0). The non-stationary version of the state equation is:

1i Di i Di i i i

i Di i i

x A x B u W w
y C x v

+ = + +
= +  

   
(21)

In the sequel, for increasing the readability of the patterns, the 
lower index D will be omitted ADi=Ai.

The version of Kalman one-step predictor working on the as-
sumption that the predicted state estimate 1 ( 1| )ix x i i+ = +  
depends on the current measurement of output yi and will not be 
corrected by the next measurement yi+1.
Gain matrix:   

1
0[ ]      ;    (0)T T

i i i i i i i iG A PC C PC R P P−= + =

State prediction:   

1 0[ ]    ;      (0)i i i i i i i i ix A G C x B u G y x x+ = − + + =
  (22)

The variance matrix:   

1
T T T

i i i i i i i i i i iP A P A G C P A W QW+ = − +
.

This above basic version of KF is called the prediction filter, 
and is used in all control problems with the state observation and 
feedback applications. 

The version of the two-step Kalman filter (predictor + correc-
tor) working on the assumption that the predicted state estimate 

1ˆ ˆ( 1| 1)ix x i i+ = + +  depends on the current measurement of 
output yi and will be additionally corrected with a future meas-
urement of yi+1. The predicted value of the state, based only on 
the current output measurement (without correction), as in ver-
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sion 1, will be denoted by 1 ( 1| )ix x i i+ = + . 
We will denote: 
the state prediction: 1 ( 1| )ix x i i+ = + ,
the corrected state prediction: 1ˆ ˆ( 1| 1)ix x i i+ = + + .

The steps in KF algorithm:
State prediction: 

+1 0ˆ ˆ        (0)i i i i ix A x B u x x= + =
Prediction of variance:  

1
ˆ  i

T T
i i i i i iP A P A W QW+ = +

Innovation (residuum):  

1 1 1 1 1 1i i i i i ie y y y C x+ + + + + += − = −
The variance of innovation:  

1 1 1 1 1
T

i i i i iL C P C R+ + + + += +
Filter gain:    

1 1
1 1 1 1 1 1 1 1 1 1[ ]T T T

i i i i i i i i i iG P C L P C C P C R− −
+ + + + + + + + + += = +

The variance correction:  

1 1 1 1
ˆ [ ]i i i iP I G C P+ + + += −

Corrected state prediction, that is, the filter equation:  

1 1 1 1 1 1 1 1 1ˆ [ ]i i i i i i i i ix x G e I G C x G y+ + + + + + + + += + = − + =
1 1ˆi i i i i iA x B u G e+ += + + .   (23)

The above version is usually called the Kalman Filter.
It is worth noting that in on-line control applications in which 

the regulator generates the control signal in the current step, for 
the next sampling period based on the current output measure-
ment and one-step prediction of the state based on the equation 

1 1i iu K x+ += − , then only the Kalman predictor, can be used 
formally, because only the predicted state 1ix +  and the control 

1iu +  can generate a future real state 1ix +  and a real output

1 1( )i iy f u+ += , that can no longer be used for correction of 
the used state 1ix + .

The use in the Kalman filter, the predicted state 1ˆix +  cor-
rected by 1iy + , for control generation in the same sample, is not 
realizable in the feedback loop. Therefore, the discrete Kalman 
filter (in the predictor-corrector version) is most often used for 
the best continuous filtration of measurement signals (e.g. video 
or audio) without the possibility of using this signal in the feed-
back loop. 

For decreasing sampling of times, both of these versions dis-
cussed above converge to one common version, which is equiv-
alent to a continuous version of KF. For nonlinear systems, the 
so-called Extended Kalman Filter was invented, which uses 
data from a non-linear model in every step, and in the algorithm, 
it uses the matrix of the linearized model [9].

Conclusions 

In this paper, the theory of the optimal asymptotic state filter 
and asymptotic state observer was recalled and presented. Three 
versions of Kalman Filter were compared: the continuous ver-

sion of KF, one-step predictor KF and two-step Kalman filter 
(predictor + corrector). For control processes very often the sim-
plified deterministic version of Kalman Filter is used, so-called 
Luenberger state observer. Numerical examples show that the 
state estimation and the state stabilization by the use of Kalman 
Filter are characterized by the asymptotic convergence to the 
real state functions. Changing the covariance matrices Q and 
R the filter gain G is changing. The dynamics and quality of 
the Luenberger observer depend on the observer gain, which is 
calculated based on pole placement technique. The asymptotic 
behavior of the convergence of the state estimate given by KF 
or Luenberger observer is due to their structure based on linear 
differential/difference equation.
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