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ON THE HOMOGENEOUS EXTREMAL FUNCTION FOR
THE STANDARD SIMPLEX

Abstract. In this paper an explicit formula for the homogeneous Si-
ciak’s extremal function is computed in the case of standard simplex
in RN . There are discussed some problems related to this result. In
particular, there is proved a version of Klimek’s type theorem for the
homogeneous extremal function.

1. Introduction

Let P(CN) and H(CN) denotes the space of polynomials or the space of

homogeneous polynomials of N complex variables, respectively. PSH(Ω) is

the cone of plurisubharmonic functions on Ω. Let us recall definitions of two

important extremal functions associated to a compact E in CN introduced

by Józef Siciak in the sixties of the twentieth century.

Φ(E, z) = sup{|P (z)|1/ degP : P ∈ P(CN), degP ≥ 1, ||P ||E ≤ 1}, z ∈ CN ,

Ψ(E, z) = sup{|P (z)|1/ degP : P ∈ H(CN), degP ≥ 1, ||P ||E ≤ 1}, z ∈ CN .

The basic property of those functions is related to an important fact that

they can be obtained by large families of plurisubharmonic functions, see

[7],[8]. To descript this, let us recall that the Lelong class L(CN) is equal

to the family u ∈ PSH(CN) such that sup{u(z) − log(1 + (|z1|2 + · · · +
|zN |2)1/2)} < ∞. Another important family is H(CN) = {f ∈ PSH(CN) :

f ̸≡ 0, f(λz) = |λ|f(z), λ ∈ C, z ∈ CN}.

Theorem 1.1. (a) (Zakharyuta-Siciak theorem)

Φ(E, z) = expV (E, z) = exp sup{u(z) : u ∈ L(CN), u|E ≤ 0}, z ∈ CN .

b) (Siciak’s theorem)

Ψ(E, z) = sup{f(z) : f ∈ H(CN), f |E ≤ 1}.

Zakharyuta-Siciak theorem is a basic link between approximation theory

and pluripotential methods, we refer to [5] for details.

Remark 1.2. Let us recall a few important properties of the above extremal

functions.

a) Φ(E, z) ≤ Φ(F, z) and Ψ(E, z) ≤ Ψ(F, z) in the case F ⊂ E.
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b) If En ↘ E then Φ(En, z) ↗ Φ(E, z) and Ψ(En, z) ↗ Ψ(E, z).

c) If E is a circular set then Φ(E, z) = max(1,Ψ(E, z)), z ∈ CN .

d) Let L(z) = �L(z)+ b, where b ∈ CN and �L is a linear isomorphism of

CN . Then for all z ∈ CN

(1.1) Φ(L−1(E), z) = Φ(E,L(z)),

(1.2) Ψ(�L−1(E), z) = Φ(E, �L(z)).
We shall see in the last section that in (1.2) we can not replace

�L(z) by L(z). On the other hand (1.1) can be generalized to the

more general case of polynomial mappings by well known Klimek’s

theorem. Also in (1.2) linear isomorphisms �L(z) can be replaced by

a more general class of homogeneous polynomial mappings.

Example 1.3. If E = BN = {z ∈ CN : zj ∈ R, z21 + · · ·+ z2N ≤ 1} then by

the Lundin formula (cf. [5] where the proof is presented) we can write

Φ(E, z) = h(|z1|2 + · · ·+ |zN |2 + |z21 + · · ·+ z2N − 1|)1/2, z ∈ CN ,

where h(t) = t +
√
t2 − 1 for t ≥ 1. Applying methods from [1],[2] one can

obtain (cf. [4]) the following interesting formula

Φ(SN−1, z) = Φ(BN , z) = h(|z1|2 + · · ·+ |zN |2)1/2, if z21 + · · ·+ z2N = 1.

Example 1.4.

(1) If E is the closed unit ball in CN with respect to a norm ||z||
then there is well known that Ψ(E, z) = ||z|| (while Φ(E, z) =

max(1, ||z||) and thus Φ(E, z) = Ψ(z, E), ||z|| ≥ 1).

(2) A situation is much more complicated if E is a convex symmetric

body in RN . There was known in the case E = BN that Ψ(E, z) =

Ψ(SN−1, z) = LN(z) is the Lie norm in CN and Φ(SN−1, z) =

Ψ(SN−1, z) for z ∈ SN−1, where

SN−1 = {x ∈ RN : x2
1+· · ·+x2

N = 1} ⊂ SN−1 = {z ∈ CN : z21+· · ·+z2N = 1}.

If N > 2 a situation is quite unclear. But in the case N = 2 there

is known the following result (cf. [3]):

Let S be the unit ball with respect to a norm N in R2. If u(t) =

logN(1, t) then

Ψ(S, (z1, z2)) = |z1| expPu(z2/z1),

with

Pu(ζ) = (ℑζ) 1
π

∫ ∞

−∞
|ζ − t|−2u(t)dt =

1

π

∫ ∞

−∞
u(ty + x)

dt

1 + t2
,
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where ζ = x+ iy, y ≥ 0. In particular, if

Nm(x) = (|x1|m + |x2|m)1/m and Sm = {x ∈ R2 : Nm(x) = 1},

then for all z ∈ C2,

Ψ(S2m, z) =

[
m∏
j=1

(
|z1|2 − 2αjℜ(z1z2) + |z2|2 + 2|βj|ℑ(z1z2)|

)1/2
]1/m

,

where ζj = αj + iβj ∈ 2m
√
−1, j = 1, . . . ,m, with ζj ̸= ζk for j ̸= k.

If N∞(x) = max(|x1|, |x2|) and S∞ = {x ∈ R2 : N∞(x) = 1},
then for all z ∈ C2,

log Ψ(S∞, z) =

∫ 2π

0

log
(
|z1|2 − 2 cos θℜ(z1z2) + |z2|2 + 2| sin θℑ(z1z2)|

)1/2 dθ
2π

.

Since S1 = {x ∈ R2 : |x1|+ |x2| = 1} = L−1(S∞), where L(z1, z2) =

(z1 − z2, z1 + z2), we get

logΨ(S1, z) = logΨ(S∞, L(z))

=

∫ 2π

0

log
(
2|z1|2 + 2|z2|2 − 2 cos θ(|z1|2 − |z2|2) + 4| sin θℑ(z1z2)|

) dθ

4π
.

Let us note, that except m = 2 the homogeneous extremal func-

tion Ψ(E, (z1, z2)) is not a norm in C2.

Let us go to the mentioned case of the unit Euclidean ball in RN .

Proposition 1.5. (Siciak’s formula)

Ψ(BN , z) = LN(z) =

(
||z||22 − |z2|

2

)1/2

+

(
||z||22 + |z2|

2

)1/2

=
(
|z1|2 + · · ·+ |zN |2 +

(
(|z1|2 + · · ·+ |zN |2)2 − |z21 + · · ·+ z2N |2

)1/2)1/2

.

Here ||z||22 = |z1|2+ · · ·+ |zN |2, z2 = z21 + · · ·+z2N . In the special case N = 2

we have

Ψ(B2, z) = max(|z1 − iz2|, |z1 + iz2|).

Since logLN ∈ PSH(CN), we get L2
N ∈ PSH(CN). Define

uN(z) = max{L2
N(w1, . . . , wN) : w2

1 = z1, . . . , z
2
N = zN}

= |z1|+ · · ·+ |zN |+
(
(|z1|+ · · ·+ |zN |)2 − |z1 + · · ·+ zN |2

)1/2
.

By Proposition 2.9.26 in [5] we deduce that uN ∈ PSH(CN).

In the special case N = 2 we can apply another argument (which fails

if N ≥ 3). Namely, one can easily calculate that
[

∂2v2
∂zj∂zk

]
= 0 on CN \ F ,

where v2(z1, z2) = (2|z1z2| − ℜ(z1z2))1/2 and F = {z ∈ C2 : z1z2 ≥ 0} is
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a subset of Lebesgue measure equals 0. Since v2 is continuous we obtain

v2 ∈ PSH(C2) and therefore u2(z) = |z1|+ |z2|+ v2(z) ∈ PSH(C2).

We also have
[

∂2v2
∂zj∂zk

]
= 0 on C2 in the distributional sense,(ddc)2v2 = 0

and (ddc)2u2 = (ddc)2(|z1|+ |z2|).

2. Homogeneous extremal function for the simplex

Actually there is well known an explicit formula ([1],[2], see also [5]) for

the Siciak’s extremal function in the case of standard simplex

�SN = {x ∈ RN : x1 ≥ 0, . . . , xN ≥ 0, x1 + · · ·+ xN ≤ 1} = conv(0 ∪ SN−1),

where

SN−1 = {x ∈ RN : x1 ≥ 0, . . . , xN ≥ 0, x1 + · · ·+ xN = 1} ⊂ SN−1

= {z ∈ CN : z1 + · · ·+ zN = 1}.

Φ(�SN , z) = h(|z1|+ · · ·+ |zN |+ |z1 + · · ·+ zN − 1|).
Hence for an arbitrary ζ ∈ C \ {0}

Ψ(SN−1, z) = Ψ(�SN , z) ≤ |ζ|Φ(�SN , ζ
−1z)

= |ζ|h(|z1/ζ|+ · · ·+ |zN/ζ|+ |ζ−1(z1 + · · ·+ zN)− 1|).
In particular, taking ζ = z1 + · · ·+ zN ̸= 0 we get

Ψ(SN−1, z) ≤ |z1 + · · ·+ zN |h(|z1/ζ|+ · · ·+ |zN/ζ|)

= |z1|+ · · ·+ |zN |+
(
(|z1|+ · · ·+ |zN |)2 − |z1 + · · ·+ zN |2

)1/2
.

Theorem 2.1. For an arbitrary N ≥ 1 and for all z ∈ CN we have equality

Ψ(SN−1, z) = |z1|+ · · ·+ |zN |+
(
(|z1|+ · · ·+ |zN |)2 − |z1 + · · ·+ zN |2

)1/2

= |z1|+ · · ·+ |zN |+ 2

( ∑
1≤i<j≤N

(ℑ
√

zizj)
2

)1/2

Proof. We have inequalities

Ψ(SN−1, z) = Ψ(�SN , z)

≤ |z1|+ · · ·+ |zN |+
(
(|z1|+ · · ·+ |zN |)2 − |z1 + · · ·+ zN |2

)1/2
= uN(z).

Since uN(λz) = |λ|uN(z), uN ∈ PSH(CN) and uN |SN−1 = 1 we see that

uN ∈ H(CN). By Siciak’s theorem we get inequality uN(z) ≤ Ψ(SN−1, z)

which finishes the proof.

�
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3. Examples and remarks

We have Ψ(BN , z) = Φ(BN , z) =
√

h(||z||2) for z ∈ SN−1. Moreover, as

it was proved in [4], we also have

Φ(SN−1, z) = Φ(BN , z) = Ψ(BN , z) = Ψ(SN−1, z) =
√

h(||z||2), z ∈ z ∈ SN−1.

Let F (z) = (z21 , . . . , z
2
N). Then F−1(SN−1) = SN−1. By Klimek’s theorem

(cf. [5], Theorem )

h(||z||2) = Φ(SN−1, z)2 = Φ(F−1(SN), z)
2 = Φ(SN−1, F (z)), z ∈ SN−1,

which implies

Φ(SN−1, z) = h(|z1|+ · · ·+ |zN |) = h(||z||1), z ∈ SN−1.

Corollary 3.1. For an arbitrary N ≥ 2

Φ(SN−1, z) = Φ(�SN , z) = Ψ(�SN , z) = Ψ(SN−1, z), z ∈ SN−1.

Example 3.2. Let E = {x ∈ R2 : x1, x2 ∈ [−1/2, 1/2], x1 + x2 = 0} =

S1 − (1/2, . . . , 1/2) ⊂ {z : z1 + z2 = 0}. Then

Φ(E, z) = Φ(SN−1, z + (1/2, 1/2)) = h(|z1 + 1/2|+ |z2 + 1/2|), z1 + z2 = 0.

Ψ(S1, z + (1/2, 1/2)) =

|z1 + 1/2|+ |z2 + 1/2|+
(
(|z1 + 1/2|+ |z2 + 1/2|)2 − |z1 + z2 + 1|2

)1/2
,

for all z ∈ C2. But

Ψ(E, z) = Ψ(S1 − (1/2, 1, 2), z) = lim
n→∞

Ψ(En, z)

= lim
n→∞

max(|z1 − z2 − in(z1 + z2)|, |z1 − z2 + in(z1 + z2)|)

=

{
|z1 − z2|, z1 + z2 = 0,

+∞, z1 + z2 ̸= 0,

where En = {x : (x1 − x2)
2 + n2(x1 + x2)

2 ≤ 1} = Λ−1
n (B2), Λn(z) =

(z1 − z2, n(z1 + z2). We see that Ψ(S1 − (1/2, 1/2), z) ̸= Ψ(S1, z+(1/2, 1/2)

for all z ∈ C2. Moreover, Φ(S1 − (1/2, 1/2), z) = Ψ(S1 − (1/2, 1/2), z) iff

z = (−1/2, 1/2) or z = (1/2,−1, 2).

Let us formulate a version of Klimek’s theorem for homogeneous poly-

nomial mapping.

Theorem 3.3. Let H(z) = (H1(z), . . . , HN(z)), Hj ∈ H(CN), degHj =

d ≥ 1, j = 1, . . . , N and H−1({0}) = {0}. Then for an arbitrary compact

E ⊂ CN

Ψ(H−1(E), z) = Ψ(E,H(z))1/d, z ∈ CN .
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( ∑
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�
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Proof. A proof is a modification of Klimek’s proof of his theorem presented

in[5].

If z ∈ H−1(E) then H(z) ∈ E and therefore

||Q ◦H||H−1(E) ≤ 1 if Q ∈ H(CN), ||Q||E ≤ 1.

Hence we get inequality Ψ(E,H(z))1/d ≤ Ψ(H−1(E), z), z ∈ CN . Now

consider Q ∈ H(CN), ||Q||H−1(E) ≤ 1 and define

f(z) = sup{|Q(w)|d/degP : w ∈ H−1(z)}, z ∈ CN .

We now have, again by Proposition 2.9.26 in [5], f ∈ PSH(CN) and

f(λz) = sup{|Q(w)|d/degQ : H(w) = λz}

= |λ| sup{|Q(λ−1/dw)|d/degQ : H(λ−1/dw) = z} = |λ|f(z)|.
Thus f ∈ H(CN) and f |E ≤ 1 which gives inequality f(z) ≤ Ψ(E, z), by

the Siciak Theorem 1.2 b). Taking the supremum we obtain

sup{Ψ(H−1(E), w)d : H(w) = z} ≤ Ψ(E, z), z ∈ CN .

In particular Ψ(H−1(E), w) ≤ Ψ(E,H(w))1/d which finishes the proof. �

Example 3.4. Consider �K1/2 = {x ∈ C2 : x1, x2 ≥ 0, x
1/2
1 + x

1/2
2 ≤

1}, K1/2 = {x ∈ �E : x
1/2
1 + x

1/2
2 = 1} and H(z) =

((
z1−z2

2

)2
,
(
z1+z2

2

)2)

with

H−1(�K1/2) = {x : |x1|, |x2| ≤ 1} = conv(S∞), H−1(K1/2) = S∞.

Thus applying both versions of Klimek’s theorem we obtain

Ψ(K1/2, z) = Ψ(�K1/2, z) = Ψ(S∞, (
√
z1 +

√
z2,

√
z1 −

√
z2))

= exp

2π∫

0

log(2|z1|+ 2|z2| − 2 cos θ(|z1| − |z2|) + 4| sin θℑ(
√
z1z2)|)

dθ

2π
,

Φ(�K1/2, z) = max(|h(
√
z1 +

√
z2)|, |h(

√
z1 −

√
z2)|).

Take K1/2 = {z ∈ C2 : 4z2 = (1 + z2 − z1)
2} = {(ζ2, (1 − ζ)2) : ζ ∈ C}.

We have Φ(�K1/2, (ζ
2, (1− ζ)2) = |h(2ζ−1)|2 = Φ([0, 1], ζ)2. Moreover, since

Φ(K1/2, z) ≥ Φ(�K1/2, z), we get

Φ(K1/2, (ζ
2, (1−ζ)2)) ≥ |h(2ζ−1)|2 = |h(2(2ζ−1)2−1)| = |h(8ζ2−8ζ+1)|.

On the other hand since u(ζ) = log |h(8ζ2 − 8ζ +1)| is a harmonic function

on C \ [0, 1], equals 0 on [0, 1], we deduce that

Φ(K1/2, (ζ
2, (1− ζ)2)) = Φ(�K1/2, (ζ

2, (1− ζ)2)) = |h(8ζ2 − 8ζ + 1)|, ζ ∈ C.

In particular, Φ(K1/2, z) = Φ(�K1/2, z) for z ∈ K1/2. Now, if K1/2 ⊂ E ⊂
�K1/2, we also have Φ(E, z) = Φ(K1/2, z) for z ∈ K1/2.
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Example 3.5. Let E0 = [0, 2]× [0, 1] ∩ 2 �S2 − (1, 0). We have

Φ(E0, z) = max(Φ([0, 2]× [0, 1], z + (1, 0)),Φ(2 �S2, z + (1, 0)))

= h

(
max

(
1

2
|z1 + 1|+ |1

2
z1 − 1/2|, |z2|+ |z2 − 1|,

|1
2
(|z1 + 1|+ |z2|)|+ |1

2
(z1 + z2)− 1/2|

))

and we can easily compute that

Φ(E0, z) = Φ(S1, z) = h(|z1|+ |z2|), z1 + z2 = 1.

Hence for an arbitrary set S1 ⊂ E ⊂ E0 we also have Φ(E, z) = Φ(S1, z), z1+

z2 = 1.

Remark 3.6. The last two examples are related to the following problem.

Let E0 be a compact subset of RN , E ⊂ E0 and there exist irreducible

polynomials p1, . . . , ps such that E = p−1
1 (0) ∩ · · · ∩ p−1

s (0) ∩ ∂E0. Let E =

{z ∈ CN : p1(z) = · · · = ps(z) = 0}. When Φ(E, z) = Φ(E0, z) for z ∈ E?
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Proof. A proof is a modification of Klimek’s proof of his theorem presented

in[5].

If z ∈ H−1(E) then H(z) ∈ E and therefore

||Q ◦H||H−1(E) ≤ 1 if Q ∈ H(CN), ||Q||E ≤ 1.

Hence we get inequality Ψ(E,H(z))1/d ≤ Ψ(H−1(E), z), z ∈ CN . Now

consider Q ∈ H(CN), ||Q||H−1(E) ≤ 1 and define

f(z) = sup{|Q(w)|d/degP : w ∈ H−1(z)}, z ∈ CN .

We now have, again by Proposition 2.9.26 in [5], f ∈ PSH(CN) and

f(λz) = sup{|Q(w)|d/degQ : H(w) = λz}

= |λ| sup{|Q(λ−1/dw)|d/degQ : H(λ−1/dw) = z} = |λ|f(z)|.
Thus f ∈ H(CN) and f |E ≤ 1 which gives inequality f(z) ≤ Ψ(E, z), by

the Siciak Theorem 1.2 b). Taking the supremum we obtain

sup{Ψ(H−1(E), w)d : H(w) = z} ≤ Ψ(E, z), z ∈ CN .

In particular Ψ(H−1(E), w) ≤ Ψ(E,H(w))1/d which finishes the proof. �

Example 3.4. Consider �K1/2 = {x ∈ C2 : x1, x2 ≥ 0, x
1/2
1 + x

1/2
2 ≤

1}, K1/2 = {x ∈ �E : x
1/2
1 + x

1/2
2 = 1} and H(z) =

((
z1−z2

2

)2
,
(
z1+z2

2

)2)

with

H−1(�K1/2) = {x : |x1|, |x2| ≤ 1} = conv(S∞), H−1(K1/2) = S∞.

Thus applying both versions of Klimek’s theorem we obtain

Ψ(K1/2, z) = Ψ(�K1/2, z) = Ψ(S∞, (
√
z1 +

√
z2,

√
z1 −

√
z2))

= exp

2π∫

0

log(2|z1|+ 2|z2| − 2 cos θ(|z1| − |z2|) + 4| sin θℑ(
√
z1z2)|)

dθ

2π
,

Φ(�K1/2, z) = max(|h(
√
z1 +

√
z2)|, |h(

√
z1 −

√
z2)|).

Take K1/2 = {z ∈ C2 : 4z2 = (1 + z2 − z1)
2} = {(ζ2, (1 − ζ)2) : ζ ∈ C}.

We have Φ(�K1/2, (ζ
2, (1− ζ)2) = |h(2ζ−1)|2 = Φ([0, 1], ζ)2. Moreover, since

Φ(K1/2, z) ≥ Φ(�K1/2, z), we get

Φ(K1/2, (ζ
2, (1−ζ)2)) ≥ |h(2ζ−1)|2 = |h(2(2ζ−1)2−1)| = |h(8ζ2−8ζ+1)|.

On the other hand since u(ζ) = log |h(8ζ2 − 8ζ +1)| is a harmonic function

on C \ [0, 1], equals 0 on [0, 1], we deduce that

Φ(K1/2, (ζ
2, (1− ζ)2)) = Φ(�K1/2, (ζ

2, (1− ζ)2)) = |h(8ζ2 − 8ζ + 1)|, ζ ∈ C.

In particular, Φ(K1/2, z) = Φ(�K1/2, z) for z ∈ K1/2. Now, if K1/2 ⊂ E ⊂
�K1/2, we also have Φ(E, z) = Φ(K1/2, z) for z ∈ K1/2.
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