Superlinear Robin problems with indefinite linear part

Leszek Gasińskia, ${ }^{\text {a, }}$, Nikolaos S. Papageorgiou ${ }^{\text {b }}$
${ }^{a}$ State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów, Poland
${ }^{\mathrm{b}}$ National Technical University, Athens 15780, Greece

Article history:

Received 21 December 2017
Received in revised form 8 June 2018
Accepted 10 May 2018
Available online 27 June 2018

Abstract

We consider a semilinear Robin problem driven by the Laplacian plus an indefinite and unbounded potential and a superlinear reaction term which need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools we prove two theorems. An existence theorem producing a nontrivial smooth solution and a multiplicity theorem producing a whole unbounded sequence of nontrivial smooth solutions.

Key words: Indefinite and unbounded potential, superlinear reaction, almost critical growth, regularity theory, local linking, infinitely many solutions

1 Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. In this paper, we study the following semilinear Robin problem:

$$
\left\{\begin{array}{l}
-\Delta u(z)+\xi(z) u(z)=f(z, u(z)) \quad \text { in } \Omega \tag{1.1}\\
\frac{\partial u}{\partial n}+\beta(z) u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

In this problem the potential function $\xi \in L^{s}(\Omega), s>N$ is in general indefinite (that is, sign changing). The reaction term $f(z, \zeta)$ is a Carathéodory function (that is, for all $\zeta \in \mathbb{R}, z \longmapsto f(z, \zeta)$ is measurable and for almost all $z \in \Omega$ $\zeta \longmapsto f(z, \zeta)$ is continuous). We assume that $f(z, \cdot)$ has almost critical growth (so, it does not have in general the usual subcritical growth) and $f(z, \cdot)$ is superlinear but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition. Instead we employ a more general condition which incorporates in our framework superlinear reactions with slower growth near $\pm \infty$ which fail to satisfy the Ambrosetti-Rabinowitz condition. Near zero we assume that $f(z, \cdot)$ is strictly sublinear. In the boundary condition, $\frac{\partial u}{\partial n}$, for $u \in H^{1}(\Omega)$, stands for the usual normal derivative defined by extension of the continuous linear map

$$
C^{1}(\bar{\Omega}) \ni u \longmapsto \frac{\partial u}{\partial n}=(D u, n)_{\mathbb{R}^{N}}
$$

[^0]with $n(\cdot)$ being the outward unit normal on $\partial \Omega$. The boundary coefficient $\beta \in W^{1, \infty}(\partial \Omega)$ with $\beta(z) \geqslant 0$ for all $z \in \partial \Omega$. When $\beta \equiv 0$, we have the usual Neumann problem.

Recently there have been existence and multiplicity results for semilinear elliptic equations with general potential. We mention the work of GasińskiPapageorgiou [5], Li-Wang [10], Papageorgiou-Papalini [14], Qin-Tang-Zhang [19] (Dirichlet problems), Papageorgiou-Rădulescu [16], Papageorgiou-Rădulescu [17] (Neumann problem) and Papageorgiou-Smyrlis [18], Shi-Li [21] (Robin problems). Superlinear equations were considered only in the context of Dirichlet problems under more restrictive conditions on the data by Li-Wang [10] and Qin-Tang-Zhang [19]. For other boundary value problems with Robin boundary condition we refer to Bai-Gasiński-Papageorgiou [2], Gasiński-O'ReganPapageorgiou [3], Gasiński-Papageorgiou [6, 7, 8, 9].

In this paper using variational tools based on the critical point theory, we prove two theorems. The first is an existence theorem producing a nontrivial smooth solution. In the second theorem, under a symmetry condition on $f(z, \cdot)$, we produce an unbounded sequence of nontrivial smooth solutions.

2 Mathematical Background

Let X be a Banach space and let X^{*} denote its topological dual. By $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(X^{*}, X\right)$. Given $\varphi \in C^{1}(X ; \mathbb{R})$, we say that φ satisfies the $(C)^{*}$-condition, if the following property holds:
"Every sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq X$ such that $\sup _{n \geqslant 1} \varphi\left(u_{n}\right)<+\infty$ and

$$
\left.\left(1+\left\|u_{n}\right\|\right)\right) \varphi^{\prime}\left(u_{n}\right) \longrightarrow 0 \quad \text { in } X^{*}
$$

admits a strongly convergent subsequence which converges to a critical point of φ."

Remark 2.1. This is a slightly more general version of the well-known Cerami condition, which says that:
"Every sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq X$ such that $\left|\varphi\left(x_{n}\right)\right| \leqslant M$ for some $M>0$ and all $n \in \mathbb{N}$ and

$$
\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \longrightarrow 0 \quad \text { in } X^{*}
$$

admits a strongly convergent subsequence."
This is a compactness type condition on the functional φ more general than the classical Palais-Smale condition. The Cerami condition suffices to have a deformation theorem from which one can derive the minimax theory of the critical values of φ. The Cerami condition and the Palais-Smale condition are equivalent if φ is bounded below (see Motreanu-Motreanu-Papageorgiou [13, p. 104]).

Also, suppose that X admits a direct sum decomposition

$$
\begin{equation*}
X=Y \oplus V \tag{2.1}
\end{equation*}
$$

We say that $\varphi \in C^{1}(X ; \mathbb{R})$ has a local linking at $u=0$ with respect to (2.1), if there exists $r>0$ such that

$$
\begin{aligned}
& \varphi(y) \leqslant 0 \quad \text { for all } y \in Y, \text { with }\|y\| \leqslant r \\
& \varphi(v) \geqslant 0 \quad \text { for all } v \in V, \text { with }\|v\| \leqslant r
\end{aligned}
$$

The following existence theorem is due to Luan-Mao [12, Theorem 2.2].
Theorem 2.2. If $\varphi \in C^{1}(X ; \mathbb{R})$ satisfies the following assumptions:
(i) φ has a local linking at $u=0$ with respect to (2.1);
(ii) φ satisfies the $(C)^{*}$-condition;
(iii) φ maps bounded sets into bounded sets;
(iv) for every finite dimensional subspace Z of V we have

$$
\varphi(u) \longrightarrow-\infty \quad \text { for all } u \in Y \oplus Z, \text { with }\|u\| \rightarrow+\infty,
$$

then φ has at least two critical points.
Remark 2.3. According to the above theorem, φ has at least one nontrivial critical point.

Another result that we will use is the so called "Symmetric Mountain Pass Theorem" of Rabinowitz [20] (see also Gasiński-Papageorgiou [4, p. 688]).

Theorem 2.4. If X is an infinite dimensional Banach space with a direct sum decomposition

$$
X=Y \oplus E \quad \text { with } Y \text { finite dimensional }
$$

$\varphi \in C^{1}(X ; \mathbb{R})$ is even, satisfies the Cerami condition, $\varphi(0)=0$ and
(i) there exist $\eta, r>0$ such that

$$
\left.\varphi\right|_{E \cap \partial B_{r}} \geqslant \eta,
$$

with $\partial B_{r}=\{u \in X:\|u\|=r\}$;
(ii) for every finite dimensional subspace $Z \subseteq X$ there exists $\varrho=\varrho(Z)>0$ such that

$$
\left.\varphi\right|_{Z \backslash\left(Z \cap B_{e}\right)} \leqslant 0
$$

with $B_{\varrho}=\{u \in X:\|u\|<\varrho\}$,
then φ admits an unbounded sequence of critical values.
Next, let us recall some basic facts about the spectrum of $u \longmapsto-\Delta u+\xi(z) u$, $u \in H^{1}(\Omega)$, with Robin boundary condition. For details see D'Aguì-MaranoPapageorgiou [1].

First we introduce the spaces which we will use in the sequel. These are:

- the Sobolev space $H^{1}(\Omega)$;
- the Banach sapce $C^{1}(\bar{\Omega})$;
- the boundary Lebesgue spaces $L^{q}(\partial \Omega)$ with $1 \leqslant q \leqslant+\infty$.

We know that $H^{1}(\Omega)$ is a Hilbert space with inner product given by

$$
(u, v)_{H^{1}}=\int_{\Omega} u v d z+\int_{\Omega}(D u, D v)_{\mathbb{R}^{N}} d z \quad \forall u, v \in H^{1}(\Omega)
$$

By $\|\cdot\|$ we denote the corresponding norm defined by

$$
\|u\|=\left(\|u\|_{2}^{2}+\|D u\|_{2}^{2}\right)^{\frac{1}{2}} \quad \forall u \in H^{1}(\Omega)
$$

The Banach space $C^{1}(\bar{\Omega})$ is an ordered Banach space with positive (order) cone

$$
C_{+}=\left\{u \in C^{1}(\bar{\Omega}): u(z) \geqslant 0 \text { for all } z \in \bar{\Omega}\right\}
$$

This cone has a nonempty interior given by

$$
D_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \bar{\Omega}\right\}
$$

On $\partial \Omega$ we consider the ($N-1$)-dimensional Hausdorff (surface) measure $\sigma(\cdot)$. Using this measure, we can define in the usual way the "boundary" Lebesgue spaces $L^{q}(\partial \Omega)(1 \leqslant q \leqslant+\infty)$. We know that there is a unique continuous linear map $\gamma_{0}: H^{1}(\Omega) \longrightarrow L^{2}(\partial \Omega)$, known as the "trace map", such that

$$
\gamma_{0}(u)=\left.u\right|_{\partial \Omega} \quad \forall u \in H^{1}(\Omega) \cap C(\bar{\Omega})
$$

So, the trace map assigns boundary values to all Sobolev functions. This map is compact into $L^{q}(\partial \Omega)$ for all $q \in\left[1, \frac{2(N-1)}{N-2}\right)$ if $N \geqslant 3$ and into $L^{q}(\partial \Omega)$ for all $q \geqslant 1$ if $N=1,2$. In addition, we have

$$
\operatorname{ker} \gamma_{0}=H_{0}^{1}(\Omega) \quad \text { and } \quad \operatorname{im} \gamma_{0}=H^{\frac{1}{2}, 2}(\partial \Omega)
$$

In what follows, for notational economy we drop the use of γ_{0}. All restrictions of Sobolev functions on $\partial \Omega$ are understand in the sense of traces.

Suppose that

$$
\xi \in L^{s}(\Omega), \quad s>N
$$

and

$$
\beta \in W^{1, \infty}(\partial \Omega) \quad \text { with } \beta(z) \geqslant 0 \quad \forall z \in \partial \Omega
$$

Consider the following linear eigenvalue problem:

$$
\left\{\begin{array}{l}
-\Delta u(z)+\xi(z) u(z)=\widehat{\lambda} u(z) \quad \text { in } \Omega \tag{2.2}\\
\frac{\partial u}{\partial n}+\beta(z) u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Consider the C^{1}-functional $\gamma: H^{1}(\Omega) \longrightarrow \mathbb{R}$ defined by

$$
\gamma(u)=\|D u\|_{2}^{2}+\int_{\Omega} \xi(z) u^{2} d z+\int_{\partial \Omega} \beta(z) u^{2} d \sigma \quad \forall u \in H^{1}(\Omega)
$$

From D'Aguì-Marano-Papageorgiou [1], we know that there exists $\mu>0$ such that

$$
\begin{equation*}
\gamma(u)+\mu\|u\|_{2}^{2} \geqslant c_{0}\|u\|^{2} \quad \forall u \in H^{1}(\Omega) \tag{2.3}
\end{equation*}
$$

for some $c_{0}>0$. Using (2.3) and the spectral theorem for compact self-adjoint operators on a Hilbert space, we can show that the spectrum of (2.2) consists of a strictly increasing sequence $\left\{\widehat{\lambda}_{k}\right\}_{k \geqslant 1}$ of eigenvalues such that $\hat{\lambda}_{k} \longrightarrow+\infty$. By $E\left(\widehat{\lambda}_{k}\right), k \in \mathbb{N}$, we denote the corresponding eigenspace. We have

- $\widehat{\lambda}_{1}$ is simple (that is, $\operatorname{dim} E\left(\widehat{\lambda}_{1}\right)=1$) and

$$
\begin{equation*}
\widehat{\lambda}_{1}=\inf \left\{\frac{\gamma(u)}{\|u\|^{2}}: u \in H^{1}(\Omega), u \neq 0\right\} \tag{2.4}
\end{equation*}
$$

- for every $m \in \mathbb{N}, m \geqslant 2$, we have

$$
\begin{align*}
\widehat{\lambda}_{m} & =\inf \left\{\frac{\gamma(u)}{\|u\|^{2}}: u \in \overline{\bigoplus_{k \geqslant m} E\left(\widehat{\lambda}_{k}\right)}, u \neq 0\right\} \\
& =\sup \left\{\frac{\gamma(u)}{\|u\|^{2}}: u \in \bigoplus_{k=1}^{m} E\left(\widehat{\lambda}_{k}\right), u \neq 0\right\} \tag{2.5}
\end{align*}
$$

- for each $k \in \mathbb{N}, E\left(\widehat{\lambda}_{k}\right)$ is finite dimensional, $E\left(\widehat{\lambda}_{k}\right) \subseteq C^{1}(\bar{\Omega})$ and it has the "unique continuation property" (UCP for short), which says that if $u \in E\left(\widehat{\lambda}_{k}\right)$ vanishes on a set of positive measure in Ω, then $u \equiv 0$.

The above properties imply that the elements of $E\left(\widehat{\lambda}_{1}\right)$ do not change sign, that is,

$$
E\left(\widehat{\lambda}_{1}\right) \subseteq C_{+} \cup\left(-C_{+}\right)
$$

In fact, if in addition we assume that $\xi^{+} \in L^{\infty}$, then

$$
E\left(\widehat{\lambda}_{1}\right) \backslash\{0\} \subseteq D_{+} \cup\left(-D_{+}\right)
$$

We set

$$
m_{+}=\min \left\{k \in \mathbb{N}: \hat{\lambda}_{k}>0\right\} \quad \text { and } \quad m_{-}=\max \left\{k \in \mathbb{N}: \hat{\lambda}_{k}<0\right\}
$$

Also, by $|\cdot|_{N}$ we denote the Lebesgue measure on \mathbb{R}^{N}. Let

$$
2^{*}=\left\{\begin{array}{lll}
\frac{2 N}{N-2} & \text { if } & N \geqslant 3 \\
+\infty & \text { if } & N=1,2
\end{array}\right.
$$

(the critical Sobolev exponent) and if $\varphi \in C^{1}(X ; \mathbb{R})$, then

$$
K_{\varphi}=\left\{u \in X: \varphi^{\prime}(u)=0\right\}
$$

(the critical set of φ).
By $A \in \mathcal{L}\left(H^{1}(\Omega), H^{1}(\Omega)^{*}\right)$ we denote the operator defined by

$$
\langle A(u), h\rangle=\int_{\Omega}(D u, D h)_{\mathbb{R}^{N}} d z \quad \forall u, h \in H^{1}(\Omega)
$$

Moreover, for $q \in(1,+\infty)$, by $q^{\prime} \in(1, \infty)$ we denote the conjugate exponent of q, that is,

$$
\frac{1}{q}+\frac{1}{q^{\prime}}=1
$$

3 Existence Theorem

In this section we prove an existence theorem for problem (1.1). We impose the following conditions on the data of (1.1).
$\underline{H(\xi):} \xi \in L^{s}(\Omega), s>N$.
$\underline{H(\beta):} \beta \in W^{1, \infty}(\partial \Omega)$ with $\beta(z) \geqslant 0$ for all $z \in \partial \Omega$.

Remark 3.1. When $\beta \equiv 0$, we have the usual Neumann problem.
$\underline{H_{1}}: f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is a Carathéodory function such that
(i) for every $\varrho>0$, there exists $a_{\varrho} \in L^{\infty}(\Omega)$ such that

$$
|f(z, \zeta)| \leqslant a_{\varrho}(z) \text { for a.a. } z \in \Omega, \text { all }|\zeta| \leqslant \varrho
$$

and

$$
\lim _{\zeta \rightarrow \pm \infty} \frac{f(z, \zeta)}{|\zeta|^{2^{*}-2} \zeta}=0 \quad \text { uniformly for a.a. } z \in \Omega
$$

(ii) if

$$
F(z, \zeta)=\int_{0}^{\zeta} f(z, s) d s
$$

and

$$
e(z, \zeta)=f(z, \zeta) \zeta-2 F(z, \zeta)
$$

then

$$
\lim _{\zeta \rightarrow \pm \infty} \frac{F(z, \zeta)}{\zeta^{2}}=+\infty \quad \text { uniformly for a.a. } z \in \Omega
$$

and there exist $d \in L^{1}(\Omega)$ and $k \in \mathbb{N}$ such that

$$
e(z, s \zeta) \leqslant k e(z, \zeta)+d(z) \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R}, s \in[0,1] .
$$

(iii) we have

$$
\lim _{\zeta \rightarrow 0} \frac{f(z, \zeta)}{\zeta}=0 \quad \text { uniformly for a.a. } z \in \Omega
$$

and there exists $\delta>0$ such that

$$
F(z, \zeta) \leqslant 0 \quad \text { for a.a. } z \in \Omega, \text { all }|\zeta| \leqslant \delta
$$

Remark 3.2. Hypothesis $H_{1}(i)$ is more general than the usual subcritical polynomial growth condition which says that

$$
|f(z, \zeta)| \leqslant a(z)\left(1+|\zeta|^{r-1}\right) \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R}
$$

with $a \in L^{\infty}(\Omega), 2<r<2^{*}$. Hypothesis $H_{1}(i)$ implies that given $\varepsilon>0$, we can find $a_{\varepsilon} \in L^{\infty}(\Omega)$ such that

$$
\begin{equation*}
|f(z, \zeta)| \leqslant a_{\varepsilon}(z)+\varepsilon|\zeta|^{2^{*}-1} \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

So, $f(z, \cdot)$ exhibits almost critical growth. The lack of compactness in the embedding of $H^{1}(\Omega)$ into $L^{2^{*}}(\Omega)$ is a source of difficulties in the study of problem (1.1). We overcome these difficulties without any use of the concentration-compactness principle. Instead our method of proof uses Vitali's theorem (the extended dominated convergence theorem; see Gasiński-Papageorgiou [4, p. 901]).

Hypothesis $H_{1}(i i)$ is the superlinearity condition on $f(z, \cdot)$. It implies that

$$
\lim _{\zeta \rightarrow \pm \infty} \frac{f(z, \zeta)}{\zeta}=+\infty \quad \text { uniformly for a.a. } z \in \Omega
$$

that is, $f(z, \cdot)$ is superlinear. This superlinearity of $f(z, \cdot)$ is not expressed using the usual in such cases Ambrosetti-Rabinowitz condition. Recall that the Ambrosetti-Rabinowitz condition says that there exist $r>2$ and $M>0$ such that

$$
\begin{equation*}
0<r F(z, \zeta) \leqslant f(z, \zeta) \zeta \quad \text { for a.a. } z \in \Omega, \text { all }|\zeta| \geqslant M \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\underset{\Omega}{\operatorname{essinf}} F(\cdot, \pm M) \tag{3.3}
\end{equation*}
$$

Integrating (3.2) and using (3.3), we obtain the weaker condition

$$
\begin{equation*}
c_{1}|\zeta|^{r} \leqslant F(z, \zeta) \text { for a.a. } z \in \Omega, \text { all }|\zeta| \geqslant M \tag{3.4}
\end{equation*}
$$

with $c_{1}>0$. From (3.4) and (3.2), it follows that the Ambrosetti-Rabinowitz condition implies that $f(z, \cdot)$ has at least $(r-1)$-polynomial growth. This excludes from consideration superlinear functions with slower growth (see the examples below). Our hypothesis $H_{1}(i i)$ is a more general version of a condition used by Li-Yang [11]. It is satisfied if there exists $M>0$ such that for almost all $z \in \Omega$:

$$
\begin{aligned}
\zeta \longmapsto \frac{f(z, \zeta)}{\zeta} \text { is nondecreasing on }[M,+\infty) \\
\zeta \longmapsto \frac{f(z, \zeta)}{\zeta} \quad \text { is nonincreasing on }(-\infty, M]
\end{aligned}
$$

Hypothesis $H_{1}(i i i)$ implies that $f(z, \cdot)$ is strictly sublinear near zero. Also, from that hypothesis we have that

$$
f(z, 0)=0 \quad \text { for a.a. } z \in \Omega
$$

Therefore the trivial function $u \equiv 0$ is always a solution of problem (1.1). Our aim is to produce nonzero solutions.

Example 3.3. The following functions satisfy hypotheses H_{1}. For the sake of simplicity we drop the z-dependence.

$$
\begin{aligned}
f_{1}(\zeta) & = \begin{cases}|\zeta|^{r-2} \zeta-|\zeta|^{\tau-2} \zeta & \text { if }|\zeta| \leqslant 1, \\
\zeta \ln \zeta & \text { if }|\zeta|>1,\end{cases} \\
f_{2}(\zeta) & = \begin{cases}|\zeta|^{2^{*}-2} \zeta\left(\ln (1+|\zeta|)-\frac{1}{2^{*}} \frac{|\zeta|}{1+|\zeta|}\right)+c & \text { if } \zeta<-1, \\
|\zeta|^{r-2} \zeta-|\zeta|^{\tau-2} \zeta & \text { if }-1 \leqslant \zeta \leqslant 1, \\
|\zeta|^{2^{*}-2} \zeta\left(\ln (1+|\zeta|)-\frac{1}{2^{*}} \frac{|\zeta|}{1+|\zeta|}\right)-c & \text { if } \zeta>1,\end{cases}
\end{aligned}
$$

with $2<\tau<r<+\infty$ and $c=\frac{1}{\ln 2}-\frac{1}{2^{*} 2}$.
Note that f_{1} fails to satisfy the Ambrosetti-Rabinowitz condition, while f_{2} does not have a subcritical polynomial growth.

Consider the energy (Euler) functional for problem (1.1), $\varphi: H^{1}(\Omega) \longrightarrow \mathbb{R}$ defined by

$$
\varphi(u)=\frac{1}{2} \gamma(u)-\int_{\Omega} F(z, u) d z \quad \forall u \in H^{1}(\Omega)
$$

Evidently $\varphi \in C^{1}\left(H^{1}(\Omega)\right)$.
Proposition 3.4. If hypotheses $H(\xi), H(\beta), H_{1}$ hold, then the energy functional φ satisfies the $(C)^{*}$-condition.

Proof. We consider a sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq H^{1}(\Omega)$ such that

$$
\begin{equation*}
\varphi\left(u_{n}\right) \leq M_{1} \quad \forall n \in \mathbb{N} \tag{3.5}
\end{equation*}
$$

for some $M_{1}>0$ and

$$
\begin{equation*}
\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \longrightarrow 0 \quad \text { in } H^{1}(\Omega)^{*} \tag{3.6}
\end{equation*}
$$

From (3.6) we have

$$
\begin{align*}
& \left|\left\langle A\left(u_{n}\right), h\right\rangle+\int_{\Omega} \xi(z) u_{n} h d z+\int_{\partial \Omega} \beta(z) u_{n} h d \sigma-\int_{\Omega} f\left(z, u_{n}\right) h d z\right| \\
\leqslant & \frac{\varepsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \quad \forall h \in H^{1}(\Omega), \tag{3.7}
\end{align*}
$$

with $\varepsilon_{n} \searrow 0$. In (3.7) we choose $h=u_{n} \in H^{1}(\Omega)$. We obtain

$$
\begin{equation*}
-\gamma\left(u_{n}\right)+\int_{\Omega} f\left(z, u_{n}\right) u_{n} d z \leqslant \varepsilon_{n} \quad \forall n \in \mathbb{N} \tag{3.8}
\end{equation*}
$$

From (3.5) we have

$$
\begin{equation*}
\gamma\left(u_{n}\right)-\int_{\Omega} 2 F\left(z, u_{n}\right) d z \leqslant 2 M_{1} \quad \forall n \in \mathbb{N} . \tag{3.9}
\end{equation*}
$$

We add (3.8) and (3.9) and obtain

$$
\begin{equation*}
\int_{\Omega} e\left(z, u_{n}\right) d z \leqslant M_{2} \quad \forall n \in \mathbb{N} \tag{3.10}
\end{equation*}
$$

for some $M_{2}>0$.
Claim: The sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq H^{1}(\Omega)$ is bounded.
We argue indirectly. So, suppose that the Claim is not true. Passing to a suitable subsequence if necessary, we may assume that

$$
\begin{equation*}
\left\|u_{n}\right\| \longrightarrow+\infty \quad \text { as } n \rightarrow+\infty \tag{3.11}
\end{equation*}
$$

We set $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}, n \in \mathbb{N}$. Then $\left\|y_{n}\right\|=1$ for all $n \in \mathbb{N}$ and so, passing to a next subsequence if necessary, we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \quad \text { in } H^{1}(\Omega) \quad \text { and } \quad y_{n} \longrightarrow y \quad \text { in } L^{\frac{2 s}{s-1}}(\Omega) \text { and in } L^{2}(\partial \Omega) \tag{3.12}
\end{equation*}
$$

First we assume that $y \not \equiv 0$. Let $\Omega_{0}=\{z \in \Omega: y(z) \neq 0\}$. Then $\left|\Omega_{0}\right|_{N}>0$ and

$$
\left|u_{n}(z)\right| \longrightarrow+\infty \quad \text { for a.a. } z \in \Omega_{0}
$$

Hypothesis $H_{1}(i i)$ implies that

$$
\frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{2}}=\frac{F\left(z, u_{n}(z)\right)}{u_{n}(z)^{2}} y_{n}(z)^{2} \longrightarrow+\infty \quad \text { for a.a. } z \in \Omega_{0}
$$

Fatou's lemma implies that

$$
\begin{equation*}
\int_{\Omega_{0}} \frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{2}} d z \longrightarrow+\infty \tag{3.13}
\end{equation*}
$$

(see hypothesis $H_{1}(i i)$). Hypotheses $H_{1}(i)$ and (ii) imply that we can find $c_{2}>0$ such that

$$
-c_{2} \leqslant F(z, \zeta) \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R}
$$

Therefore

$$
\begin{aligned}
\int_{\Omega} \frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{2}} d z & =\int_{\Omega_{0}} \frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{2}} d z+\int_{\Omega \backslash \Omega_{0}} \frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{2}} d z \\
& \geqslant \int_{\Omega_{0}} \frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{2}} d z-\frac{c_{2}}{\left\|u_{n}\right\|^{2}}|\Omega|_{N}
\end{aligned}
$$

so

$$
\begin{equation*}
\int_{\Omega} \frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{2}} d z \longrightarrow+\infty \tag{3.14}
\end{equation*}
$$

(see (3.13) and (3.11)). From hypothesis $H_{1}(i i)$, we have

$$
\begin{equation*}
2 k F(z, \zeta) \leqslant k f(z, \zeta) \zeta+d(z) \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R} \tag{3.15}
\end{equation*}
$$

From (3.7) with $h=u_{n} \in H^{1}(\Omega)$, we have

$$
\int_{\Omega} f\left(z, u_{n}\right) u_{n} d z \leqslant M_{3}+\gamma\left(u_{n}\right) \quad \forall n \in \mathbb{N}
$$

for some $M_{3}>0$, so

$$
2 k \int_{\Omega} F\left(z, u_{n}\right) d z \leqslant M_{4}+k \gamma\left(u_{n}\right) \quad \forall n \in \mathbb{N}
$$

for some $M_{4}>0$ (see (3.15)), thus

$$
2 k \int_{\Omega} \frac{F\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{2}} d z \leqslant \frac{M_{4}}{\left\|u_{n}\right\|^{2}}+k \gamma\left(y_{n}\right) \quad \forall n \in \mathbb{N}
$$

hence

$$
\begin{equation*}
\int_{\Omega} \frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{2}} d z \leqslant M_{5} \quad \forall n \in \mathbb{N} \tag{3.16}
\end{equation*}
$$

for some $M_{5}>0$ (recall that $\left\|y_{n}\right\|=1$ for all $n \in \mathbb{N}$). Comparing (3.14) and (3.16), we reach a contradiction.

Now suppose that $y \equiv 0$. Let $\vartheta>0$ and set $v_{n}=(2 \vartheta)^{\frac{1}{2}} y_{n}$ for all $n \in \mathbb{N}$. From (3.12) and since $y \equiv 0$, we have

$$
\begin{equation*}
v_{n} \xrightarrow{w} 0 \quad \text { in } H^{1}(\Omega) \quad \text { and } \quad v_{n} \longrightarrow 0 \quad \text { in } L^{\frac{2 s}{s-1}} \text { and in } L^{2}(\partial \Omega) . \tag{3.17}
\end{equation*}
$$

Let $c_{3}=\sup _{n \geqslant 1}\left\|v_{n}\right\|_{2^{*}}^{2^{*}}<+\infty\left(\right.$ see (3.17)). Hypothesis $H_{1}(i)$ implies that given $\varepsilon>0$ we can find $c_{\varepsilon}>0$ such that

$$
\begin{equation*}
|F(z, \zeta)| \leqslant \frac{\varepsilon}{2 c_{\varepsilon}}|\zeta|^{2^{*}}+c_{\varepsilon} \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R} \tag{3.18}
\end{equation*}
$$

Suppose that $E \subseteq \Omega$ is a measurable set and $|E|_{N} \leqslant \frac{\varepsilon}{2 c_{\varepsilon}}$. Then

$$
\left|\int_{E} F\left(z, v_{n}\right) d z\right| \leqslant \int_{E}\left|F\left(z, v_{n}\right)\right| d z \leqslant \frac{\varepsilon}{2 c_{\varepsilon}}\left\|v_{n}\right\|_{2^{*}}^{2^{*}}+c_{\varepsilon}|\Omega|_{N} \leqslant \varepsilon
$$

(see (3.18)), so

$$
\begin{equation*}
\left\{F\left(\cdot, v_{n}(\cdot)\right)\right\}_{n \geqslant 1} \subseteq L^{1}(\Omega) \text { is uniformly integrable. } \tag{3.19}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
F\left(z, v_{n}(z)\right) \longrightarrow 0 \quad \text { for a.a. } z \in \Omega \tag{3.20}
\end{equation*}
$$

From (3.19), (3.20) and Vitali's theorem (the extended dominated convergence theorem; see Gasiński-Papageorgiou [4, p. 901]), we have

$$
\begin{equation*}
\int_{\Omega} F\left(z, v_{n}\right) d z \longrightarrow 0 \tag{3.21}
\end{equation*}
$$

From (3.11) we see that we can find $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
0<(2 \vartheta)^{\frac{1}{2}} \frac{1}{\left\|u_{n}\right\|} \leqslant 1 \quad \forall n \geqslant n_{0} \tag{3.22}
\end{equation*}
$$

We choose $t_{n} \in[0,1]$ such that

$$
\begin{equation*}
\varphi\left(t_{n} u_{n}\right)=\max \left\{\varphi\left(t u_{n}\right): 0 \leqslant t \leqslant 1\right\} \quad \forall n \in \mathbb{N} \tag{3.23}
\end{equation*}
$$

From (3.22) and (3.23), we have

$$
\begin{align*}
\varphi\left(t_{n} u_{n}\right) & \geqslant \varphi\left(v_{n}\right)=\vartheta \gamma\left(y_{n}\right)-\int_{\Omega} F\left(z, v_{n}\right) d z \\
& =\vartheta\left(\gamma\left(y_{n}\right)+\mu\left\|y_{n}\right\|_{2}^{2}\right)-\int_{\Omega}\left(F\left(z, v_{n}\right)+\vartheta \mu y_{n}^{2}\right) d z \\
& \geqslant \vartheta c_{0}-\int_{\Omega}\left(F\left(z, v_{n}\right)+\vartheta \mu y_{n}^{2}\right) d z \quad \forall n \geqslant n_{0} \tag{3.24}
\end{align*}
$$

(see (2.3) and recall that $\|y\|=1$ for all $n \in \mathbb{N}$). Recall that $y=0$. So, from (3.12) (note that $\frac{2 s}{s-1}>2$) and (3.21) we have

$$
\int_{\Omega}\left(F\left(z, v_{n}\right)+\vartheta \mu y_{n}^{2}\right) d z \longrightarrow 0
$$

So, we can find $n_{1} \in \mathbb{N}, n_{1} \geqslant n_{0}$, such that

$$
\begin{equation*}
\int_{\Omega}\left(F\left(z, v_{n}\right)+\vartheta \mu y_{n}^{2}\right) d z \leqslant \frac{1}{2} \vartheta c_{0} \quad \forall n \geqslant n_{1} \tag{3.25}
\end{equation*}
$$

Returning to (3.24) and using (3.25), we obtain

$$
\varphi\left(t_{n} u_{n}\right) \geqslant \frac{1}{2} \vartheta c_{0} \quad \forall n \geqslant n_{1}
$$

But $\vartheta>0$ is arbitrary. So, we infer that

$$
\begin{equation*}
\varphi\left(t_{n} u_{n}\right) \longrightarrow+\infty \tag{3.26}
\end{equation*}
$$

We have

$$
\begin{equation*}
\varphi\left(u_{n}\right) \leqslant M_{1} \quad \forall n \in \mathbb{N} \quad \text { and } \quad \varphi(0)=0 \tag{3.27}
\end{equation*}
$$

(see (3.5)). From (3.23), (3.26) and (3.27), we see that we can find $n_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
t_{n} \in(0,1) \quad \forall n \geqslant n_{2} \tag{3.28}
\end{equation*}
$$

So, we have

$$
\left.\frac{d}{d t} \varphi\left(t u_{n}\right)\right|_{t=t_{n}}=0 \quad \forall n \geqslant n_{2}
$$

(see (3.23)), so

$$
\left\langle\varphi^{\prime}\left(t_{n} u_{n}\right), t_{n} u_{n}\right\rangle=0 \quad \forall n \geqslant n_{2}
$$

(using the chain rule and (3.28)), thus

$$
\begin{equation*}
\gamma\left(t_{n} u_{n}\right)=\int_{\Omega} f\left(z, t_{n} u_{n}\right)\left(t_{n} u_{n}\right) d z \quad \forall n \geqslant n_{2} \tag{3.29}
\end{equation*}
$$

Then (3.28) and hypothesis $H_{1}(i i)$ imply that

$$
\int_{\Omega} e\left(z, t_{n} u_{n}\right) d z \leqslant k \int_{\Omega} e\left(z, u_{n}\right) d z+\|d\|_{1} \quad \forall n \geqslant n_{2}
$$

so

$$
\begin{align*}
& \int_{\Omega} f\left(z, t_{n} u_{n}\right)\left(t_{n} u_{n}\right) d z \leqslant k \int_{\Omega} e\left(z, u_{n}\right) d z+\int_{\Omega} 2 F\left(z, t_{n} u_{n}\right) d z+\|d\|_{1} \\
\leqslant & M_{6}+\int_{\Omega} 2 F\left(z, t_{n} u_{n}\right) d z \quad \forall n \geqslant n_{2} \tag{3.30}
\end{align*}
$$

for some $M_{6}>0$ (see (3.10)). We return to (3.29) and use (3.30). Then

$$
\begin{equation*}
2 \varphi\left(t_{n} u_{n}\right) \leqslant M_{6} \quad \forall n \geqslant n_{2} \tag{3.31}
\end{equation*}
$$

Comparing (3.26) and (3.31) we have a contradiction. This proves the Claim.
On the account of the Claim, passing to a subsequence if necessary, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } H^{1}(\Omega) \text { and } u_{n} \longrightarrow u \text { in } L^{\frac{2 s}{s-1}}(\Omega) \quad \text { and in } L^{2}(\partial \Omega) . \tag{3.32}
\end{equation*}
$$

Let $c_{4}=\sup _{n \geqslant 1}\left\|u_{n}\right\|_{2^{*}}<+\infty$ (see (3.32)). Hypothesis $H_{1}(i)$ implies that given $\varepsilon>0$ we can find $\widehat{c}_{\varepsilon}>0$ such that

$$
\begin{equation*}
|f(z, \zeta)| \leqslant \frac{\varepsilon}{2 c_{4}^{2^{*}}}|\zeta|^{2^{*}-1}+\widehat{c}_{\varepsilon} \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R} \tag{3.33}
\end{equation*}
$$

For a measurable set $E \subseteq \Omega$, we have

$$
\begin{align*}
& \left|\int_{E} f\left(z, u_{n}\right)\left(u_{n}-u\right) d z\right| \leqslant \int_{E}\left|f\left(z, u_{n}\right)\right|\left|u_{n}-u\right| d z \\
\leqslant & \frac{\varepsilon}{2 c_{4}} \int_{E}\left|u_{n}\right|^{2^{*}-1}\left|u_{n}-u\right| d z+\widehat{c}_{4} \int_{\Omega}\left|u_{n}-u\right| d z \quad \forall n \in \mathbb{N} \tag{3.34}
\end{align*}
$$

(see (3.33)). Note that

$$
\left|u_{n}\right|^{2^{*}-1} \in L^{\left(2^{*}\right)^{\prime}}(\Omega) \quad \text { and } \quad\left|u_{n}-u\right| \in L^{2^{*}}(\Omega)
$$

(recall that $2^{*}-1=\frac{2^{*}}{\left(2^{*}\right)^{\prime}}$). Using Hölder inequality, we have

$$
\begin{align*}
& \frac{\varepsilon}{2 c_{4}^{2^{*}}} \int_{E}\left|u_{n}\right|^{2^{*}-1}\left|u_{n}-u\right| d z \\
\leqslant & \frac{\varepsilon}{2 c_{4}^{2^{*}}}\|u\|_{2^{*}}^{2^{*}-1}\left\|u_{n}-u\right\|_{2^{*}} \leqslant \frac{\varepsilon}{2} \quad \forall n \in \mathbb{N} . \tag{3.35}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\widehat{c}_{\varepsilon} \int_{E}\left|u_{n}-u\right| d z \leqslant \widehat{c}_{\varepsilon}|E|_{N}^{\frac{1}{\left(2^{*}\right)^{\prime}}}\left\|u_{n}-u\right\|_{2^{*}} \leqslant 2 \widehat{c}_{\varepsilon} c_{4}|E|_{N}^{\frac{1}{\left(2^{*}\right)^{\prime}}} \tag{3.36}
\end{equation*}
$$

We assume that

$$
\begin{equation*}
|E|_{N} \leqslant\left(\frac{\varepsilon}{4} \frac{1}{\widehat{c}_{\varepsilon} c_{4}}\right)^{\left(2^{*}\right)^{\prime}} \tag{3.37}
\end{equation*}
$$

Using (3.37) in (3.36), we see that

$$
\begin{equation*}
\widehat{c}_{\varepsilon} \int_{E}\left|u_{n}-u\right| d z \leqslant \frac{\varepsilon}{2} \quad \forall n \in \mathbb{N} . \tag{3.38}
\end{equation*}
$$

From (3.35) and (3.38), we see that given $\varepsilon>0$, we can find $\widehat{\delta}=\left(\frac{\varepsilon}{4} \frac{1}{\hat{c}_{\varepsilon} c_{4}}\right)^{\left(2^{*}\right)^{\prime}}$ such that

$$
\text { if }|E|_{N} \leqslant \widehat{\delta} \text {, then } \sup _{n \geqslant 1} \int_{E}\left|f\left(z, u_{n}\right)\right|\left|u_{n}-u\right| d z \leqslant \varepsilon
$$

so
the sequence $\left\{f\left(\cdot, u_{n}(\cdot)\right)\left(u_{n}-u\right)(\cdot)\right\}_{n \geqslant 1}$ is uniformly integrable.
For at least a subsequence, we have

$$
f\left(z, u_{n}(z)\right)\left(u_{n}-u\right)(z) \longrightarrow 0 \quad \text { for a.a. } z \in \Omega
$$

Therefore Vitali's theorem implies that

$$
\begin{equation*}
\int_{\Omega} f\left(z, u_{n}\right)\left(u_{n}-u\right) d z \longrightarrow 0 \tag{3.39}
\end{equation*}
$$

In (3.7) we choose $h=u_{n}-u \in H^{1}(\Omega)$, pass to the limit as $n \rightarrow+\infty$ and use (3.32) and (3.39). Then

$$
\lim _{n \rightarrow+\infty}\left\langle A\left(u_{n}\right), u_{n}-u\right\rangle=0
$$

so

$$
\left\|D u_{n}\right\|_{2} \longrightarrow\|D u\|_{2}
$$

thus

$$
u_{n} \longrightarrow u \quad \text { in } H^{1}(\Omega)
$$

(by the Kadec-Klee property; see Gasiński-Papageorgiou [4, p. 911]) and hence φ satisfies the $(C)^{*}$-condition.

We consider the following orthogonal direct sum decomposition

$$
\begin{equation*}
H^{1}(\Omega)=H_{-} \oplus V \tag{3.40}
\end{equation*}
$$

with

$$
\begin{equation*}
H_{-}=\bigoplus_{i=1}^{m_{-}} E\left(\widehat{\lambda}_{i}\right) \quad \text { and } \quad V=H_{-}^{\perp}=E(0) \oplus H_{+} \tag{3.41}
\end{equation*}
$$

where $H_{+}=\overline{\bigoplus_{i \geqslant m_{+}} E\left(\widehat{\lambda}_{i}\right)}$.

Proposition 3.5. If hypotheses $H(\xi), H(\beta)$ and H_{1} hold, then φ has at $u=0$ a local linking with respect to the decomposition (3.40).

Proof. From (3.41), every $v \in V$ admits a unique sum decomposition

$$
v=v^{0}+\widehat{v}, \quad \text { with } v^{0} \in E(0), \widehat{v} \in H_{+} .
$$

The eigenspace $E(0)$ is finite dimensional. So, all norms on $E(0)$ are equivalent and we can find $c_{5}>0$ such that

$$
\begin{equation*}
\left\|v^{0}\right\|_{\infty} \leqslant c_{5}\left\|v^{0}\right\| \quad \forall v^{0} \in E(0) \tag{3.42}
\end{equation*}
$$

Let $\delta>0$ be as postulated by hypothesis $H_{1}(i i i)$. We introduce the following measurable subsets of Ω

$$
\begin{equation*}
\Omega_{1}=\left\{z \in \Omega:|\widehat{v}(z)| \leqslant \frac{\delta}{2}\right\} \quad \text { and } \quad \Omega_{2}=\Omega \backslash \Omega_{1} \tag{3.43}
\end{equation*}
$$

Suppose that $z \in \Omega_{1}$. We have

$$
\begin{equation*}
|v(z)| \leqslant\left|v^{0}(z)\right|+|\widehat{v}(z)| \leqslant c_{5}\left\|v^{0}\right\|+\frac{\delta}{2} \tag{3.44}
\end{equation*}
$$

(see (3.42), (3.43)).
So, if $\varrho_{1}=\frac{\delta}{2 c_{5}}$ and $v \in V$ satisfies $\|v\| \leqslant \varrho_{1}$, then from (3.44) we have

$$
|v(z)| \leqslant \delta \quad \forall z \in \Omega_{1}
$$

(recall that $\left\|v^{0}\right\| \leqslant\|v\|$), so

$$
\begin{equation*}
\int_{\Omega_{1}} F(z, v) d z \leqslant 0 \quad \forall v \in V,\|v\| \leqslant \varrho_{1} \tag{3.45}
\end{equation*}
$$

(see hypothesis $H_{1}(i i i)$). Hypotheses $H_{1}(i),(i i i)$ imply that given $\varepsilon>0$, we can find $c_{6}=c_{6}(\varepsilon)>0$ such that

$$
\begin{equation*}
F(z, \zeta) \leqslant \varepsilon \zeta^{2}+c_{6}|\zeta|^{2^{*}} \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R} \tag{3.46}
\end{equation*}
$$

Suppose that $v \in V$ satisfies $\|v\| \leqslant \varrho_{1}$ and $z \in \Omega_{2}$. Then

$$
\begin{equation*}
|v(z)| \leqslant\left|v^{0}(z)\right|+|\widehat{v}(z)| \leqslant 2|\widehat{v}(z)| \tag{3.47}
\end{equation*}
$$

(see (3.42), (3.43)). From (3.46) and (3.47), we have

$$
\begin{equation*}
\int_{\Omega_{2}} F(z, v(z)) d z \leqslant 4 \varepsilon\|\widehat{v}\|_{2}^{2}+c_{7}\|\widehat{v}\|_{2^{*}}^{2^{*}} \quad \forall v \in V,\|v\| \leqslant \varrho_{1} \tag{3.48}
\end{equation*}
$$

for some $c_{7}>0$. Exploiting the orthogonality of the component spaces in (3.41), we have
$\varphi(v)=\frac{1}{2} \gamma(\widehat{v})-\int_{\Omega} F(z, v) d z \geqslant\left(c_{8}-4 \varepsilon\right)\|\widehat{v}\|^{2}-c_{9}\|\widehat{v}\|^{2^{*}} \quad \forall v \in V,\|v\| \leqslant \varrho_{1}$,
for some $c_{8}, c_{9}>0$ (recall that $v^{0} \in E(0), \widehat{v} \in H_{+}$and see (3.45), (3.48)).
Choosing $\varepsilon \in\left(0, \frac{c_{8}}{4}\right)$, we see that

$$
\begin{equation*}
\varphi(v) \geqslant c_{10}\|\widehat{v}\|^{2}-c_{9}\|\widehat{v}\|^{2^{*}} \quad \forall v \in V,\|v\| \leqslant \varrho_{1} \tag{3.49}
\end{equation*}
$$

for some $c_{10}>0$. Since $2^{*}>2$, from (3.49) and by choosing $\varrho_{2} \in\left(0, \min \left\{1, \varrho_{1}\right\}\right)$ small, we have

$$
\begin{equation*}
\varphi(v)>0 \quad \forall v \in V, 0<\|v\| \leqslant \varrho_{2} \tag{3.50}
\end{equation*}
$$

Hypotheses $H_{1}(i),($ iii $)$ imply that given $\varepsilon>0$, we can find $c_{11}=c_{11}(\varepsilon)>0$ such that

$$
\begin{equation*}
F(z, \zeta) \geqslant-\frac{\varepsilon}{2} \zeta^{2}-c_{11}|\zeta|^{2^{*}} \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R} \tag{3.51}
\end{equation*}
$$

Then for $\bar{u} \in H_{-}$, we have

$$
\varphi(\bar{u})=\frac{1}{2} \gamma(\bar{u})-\int_{\Omega} F(z, \bar{u}) d z \leqslant-c_{12}\|\bar{u}\|^{2}+c_{13}\|u\|^{2^{*}}
$$

for some $c_{12}, c_{13}>0$ (choosing $\varepsilon>0$ small enough). Since $2^{*}>2$, choosing $\varphi_{3} \in(0,1)$ small, we have

$$
\begin{equation*}
\varphi(\bar{u}) \leqslant 0 \quad \forall \bar{u} \in H_{-},\|\bar{u}\| \leqslant \varrho_{3} \tag{3.52}
\end{equation*}
$$

From (3.50) and (3.52), it follows that φ has at $u=0$ a local linking with respect to the decomposition (3.40).

Proposition 3.6. If hypotheses $H(\xi), H(\beta)$ and H_{1} hold and $E \subseteq V$ (see (3.41)) is a finite dimensional subspace, then $\varphi(u) \longrightarrow-\infty$ as $\|u\| \rightarrow+\infty$ with $u \in H_{-} \oplus E$.

Proof. Hypotheses $H_{1}(i)$, (ii) imply that given any $\eta>0$, we can find $c_{14}=$ $c_{14}(\eta)>0$ such that

$$
\begin{equation*}
F(z, \zeta) \geqslant \eta \zeta^{2}-c_{14} \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R} \tag{3.53}
\end{equation*}
$$

The space $H_{-} \oplus E$ is finite dimensional and so all norms are equivalent. Then for $u \in H_{-} \oplus E$ we have

$$
\varphi(u)=\frac{1}{2} \gamma(u)-\int_{\Omega} F(z, u) d z \leqslant\left(c_{15}-\eta\right)\|u\|^{2}+c_{16},
$$

for some $c_{15}, c_{16}>0$ (see (3.53)). Choosing $\eta>c_{15}$, we see that

$$
\varphi(u) \longrightarrow-\infty \quad \text { as }\|u\| \rightarrow+\infty, \quad \text { with } u \in H_{-} \oplus E
$$

Now we are ready for the existence theorem.

Theorem 3.7. If hypotheses $H(\xi), H(\beta)$ and H_{1} hold, then problem (1.1) admits a nontrivial solution $u_{0} \in C^{1}(\bar{\Omega})$.

Proof. Evidently φ maps bounded sets to bounded sets. This fact and Propositions 3.4, 3.5 and 3.6 , permit the use of Theorem 2.2 and find $u_{0} \in H^{1}(\Omega)$ such that

$$
u_{0} \in K_{\varphi} \backslash\{0\} .
$$

We have

$$
\left\langle A\left(u_{0}\right), h\right\rangle+\int_{\Omega} \xi(z) u_{0} h d z+\int_{\partial \Omega} \beta(z) u_{0} h d \sigma=\int_{\Omega} f\left(z, u_{0}\right) h d z \quad \forall h \in H^{1}(\Omega)
$$

so

$$
\left\{\begin{array}{l}
-\Delta u_{0}(z)+\xi(z) u_{0}(z)=f\left(z, u_{0}(z)\right) \text { in } \Omega \tag{3.54}\\
\frac{\partial u_{0}}{\partial n}+\beta(z) u_{0}=0 \text { on } \partial \Omega
\end{array}\right.
$$

(see Papageorgiou-Rădulescu [15]). Let

$$
\begin{align*}
& \widehat{a}(z)=\left\{\begin{array}{lll}
0 & \text { if } & \left|u_{0}(z)\right| \leqslant 1, \\
\frac{f\left(z, u_{0}(z)\right)}{u_{0}(z)} & \text { if } & \left|u_{0}(z)\right|>1
\end{array}\right. \tag{3.55}\\
& \widehat{b}(z)=\left\{\begin{array}{lll}
f\left(z, u_{0}(z)\right) & \text { if } & \left|u_{0}(z)\right| \leqslant 1, \\
0 & \text { if } & \left|u_{0}(z)\right|>1 .
\end{array}\right. \tag{3.56}
\end{align*}
$$

Hypotheses $H_{1}(i)$ and (iii) imply that given $\varepsilon>0$, we can find $c_{17}=c_{17}>0$ such that

$$
\begin{equation*}
|f(z, \zeta)| \leqslant \varepsilon|\zeta|^{2^{*}-1}+c_{17}|\zeta| \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R} \tag{3.57}
\end{equation*}
$$

Using (3.57) and the Sobolev embedding theorem, we see that

$$
\widehat{a} \in L^{\frac{N}{2}}(\Omega) .
$$

Also, from (3.35) and hypothesis $H_{1}(i)$, we have

$$
\widehat{b} \in L^{\infty}(\Omega)
$$

From (3.54) we obtain

$$
\left\{\begin{array}{l}
-\Delta u_{0}(z)=(\widehat{a}(z)-\xi(z)) u_{0}(z)+\widehat{b}(z) \quad \text { in } \Omega, \tag{3.58}\\
\frac{\partial u_{0}}{\partial n}+\beta(z) u_{0}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Note that $\widehat{a}-\xi \in L^{\frac{N}{2}}(\Omega)$ (see hypothesis $H(\xi)$) and $\widehat{b} \in L^{\infty}(\Omega)$. So, using Lemma 5.1 of Wang [22], we have that

$$
u_{0} \in L^{\infty}(\Omega)
$$

(see (3.58)). Hypotheses $H_{1}(i)$ and $H(\xi)$ imply that

$$
f\left(\cdot, u_{0}(\cdot)\right)-\xi(\cdot) u_{0}(\cdot) \in L^{s}(\Omega)
$$

So, Lemma 5.2 of Wang [22] (the Calderon-Zygmund estimates) implies that

$$
u_{0} \in W^{2, s}(\Omega)
$$

thus

$$
u_{0} \in C^{1, \alpha}(\bar{\Omega}), \quad \text { with } \alpha=1-\frac{N}{s}>0
$$

(by the Sobolev embedding theorem).

4 Infinitely Many Solutions

In this section we prove a theorem producing an unbounded sequence of distinct smooth solutions.

We introduce the following conditions on the reaction term $f(z, \zeta)$:
$\underline{H_{2}}: f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is a Carathéodory function such that $f(z, \cdot)$ is odd for almost all $z \in \Omega$ and hypotheses $H_{2}(i)$ and (ii) are the same as the corresponding hypotheses $H_{1}(i)$ and (ii).

Remark 4.1. Note that in this case no condition near zero is imposed (see hypothesis $\left.H_{1}(i i i)\right)$. Instead, we have a symmetry condition on $f(z, \cdot)$, namely we require that $f(z, \cdot)$ is odd.

Recall that

$$
H^{1}(\Omega)=H_{-} \oplus E(0) \oplus H_{+}
$$

with

$$
H_{-}=\bigoplus_{i=1}^{m_{-}} E\left(\widehat{\lambda}_{i}\right) \quad \text { and } \quad H_{+}=\overline{\bigoplus_{i \geqslant m_{+}} E\left(\widehat{\lambda}_{i}\right)}
$$

Proposition 4.2. If hypotheses $H(\xi), H(\beta)$ and H_{2} hold, then there exist $\eta, r>$ 0 and a subspace $E \subseteq H_{+}$such that

$$
\left.\varphi\right|_{E \cap \partial B_{e}} \geqslant \eta>0 .
$$

Proof. Hypothesis $H_{2}(i)$ implies that given $\varepsilon>0$, we can find $c_{17}=c_{17}(\varepsilon)>0$ such that

$$
\begin{equation*}
F(z, \zeta) \leqslant \varepsilon|\zeta|^{2^{*}}+c_{17}|\zeta| \quad \text { for a.a. } z \in \Omega, \text { all } \zeta \in \mathbb{R} . \tag{4.1}
\end{equation*}
$$

For $u \in H_{+}$, we have

$$
\begin{aligned}
\varphi(u) & =\frac{1}{2} \gamma(u)-\int_{\Omega} F(z, u) d z \geqslant \frac{1}{2} \gamma(u)-\varepsilon\|u\|_{2^{*}}^{2^{*}}-c_{17}\|u\|_{1} \\
& \geqslant \frac{1}{2} \gamma(u)-\varepsilon c_{18}\|u\|^{2^{*}}-c_{19} \frac{\|u\|}{\sqrt{\widehat{\lambda}_{n}}}
\end{aligned}
$$

$$
\begin{align*}
& \geqslant c_{20}\|u\|^{2}-\varepsilon c_{18}\|u\|^{2^{*}}-\frac{c_{19}}{\sqrt{\widehat{\lambda}_{n}}}\|u\| \\
& =\left(\frac{c_{20}}{2}\|u\|^{2}-\varepsilon c_{18}\|u\|^{2^{*}}\right)+\left(\frac{c_{20}}{2}\|u\|^{2}-\frac{c_{19}}{\sqrt{\widehat{\lambda}_{n}}}\|u\|\right), \tag{4.2}
\end{align*}
$$

for some $c_{18}, c_{19}, c_{20}>0$ and all $n \in \mathbb{N}, n \geqslant m_{+}$(recall that $u \in H_{+}$). For $\varepsilon \in(0,1)$, we can always find $\widehat{u}_{0} \in H_{+},\left\|\widehat{u}_{0}\right\|<1$ such that

$$
\begin{equation*}
\frac{c_{20}}{2}\left\|\widehat{u}_{0}\right\|^{2}-\varepsilon c_{18}\left\|\widehat{u}_{0}\right\|^{2^{*}}>0 \tag{4.3}
\end{equation*}
$$

(recall that $2<2^{*}$). Then we choose $n \in \mathbb{N}, n \geqslant m_{+}$such that

$$
\widehat{\lambda}_{n} \geqslant\left(\frac{2 c_{19}}{c_{20}} \frac{1}{\left\|\widehat{u}_{0}\right\|}\right)^{2}
$$

(recall that $\hat{\lambda}_{n} \rightarrow+\infty$). We consider the following orthogonal direct sum decomposition of $H^{1}(\Omega)$:

$$
H^{1}(\Omega)=Y \oplus E
$$

with

$$
Y=\bigoplus_{i=1}^{n-1} E\left(\widehat{\lambda}_{i}\right) \quad \text { and } \quad E=Y^{\perp}=\overline{\bigoplus_{i \geqslant n} E\left(\widehat{\lambda}_{i}\right)}
$$

Then for $u \in E$ with $\|u\|=\left\|\widehat{u}_{0}\right\|=r<1$, we have

$$
\varphi(u)=\eta=\frac{c_{20}}{2}\left\|\widehat{u}_{0}\right\|^{2}-\varepsilon c_{18}\left\|\widehat{u}_{0}\right\|^{2^{*}}>0
$$

(see (4.2) and (4.3)).
Proposition 4.3. If hypotheses $H(\xi), H(\beta)$ and H_{2} hold and $Z \subseteq H^{1}(\Omega)$ is a finite dimensional subspace, then there exists $\varrho=\varrho(Z)>0$ such that

$$
\left.\varphi\right|_{Z \backslash\left(Z \cap B_{e}\right)} \leqslant 0
$$

Proof. For $u \in Z \subseteq H^{1}(\Omega)$, we have the unique sum decomposition

$$
u=\bar{u}+u^{0}+\widehat{u}
$$

with $\bar{u} \in H_{-}, u^{0} \in E(0), \widehat{u} \in H_{+}$. Exploiting the orthogonality of the component space in this decomposition, we have

$$
\begin{aligned}
\varphi(u) & =\frac{1}{2} \gamma(\bar{u})+\frac{1}{2} \gamma(\widehat{u})-\int_{\Omega} F(z, u) d z \\
& \leqslant \frac{1}{2} \gamma(\bar{u})+\frac{1}{2} \gamma(\widehat{u})-\eta\|u\|_{2}^{2}+c_{21} \\
& \leqslant \frac{1}{2} \gamma(\widehat{u})-\eta\|\widehat{u}\|_{2}^{2}-\eta\|\bar{u}\|_{2}^{2}-\eta\left\|u^{0}\right\|_{2}^{2}+c_{21}
\end{aligned}
$$

$$
\leqslant-c_{22}\left(\|\widehat{u}\|^{2}+\|\bar{u}\|^{2}+\left\|u^{0}\right\|^{2}\right)+c_{21}=-c_{22}\|u\|^{2}+c_{21}
$$

for some $c_{21}, c_{22}>0$ by choosing $\eta>0$ big enough (see (3.53), use the Pythagorean theorem and the fact that $\left.\bar{u} \in H_{-}\right)$. So, we can find $\varrho>0$ big enough such that

$$
\left.\varphi\right|_{Z \backslash\left(Z \cap B_{e}\right)} \leqslant 0 .
$$

Now we are ready for the multiplicity theorem.
Theorem 4.4. If hypotheses $H(\xi), H(\beta)$ and H_{2} hold, then there exists a sequence of nontrivial solutions $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq C^{1}(\bar{\Omega})$ of (1.1) such that $\left\|u_{n}\right\| \longrightarrow$ $+\infty$.

Proof. Propositions 4.2 and 4.3 permit the use of Theorem 2.4. Since φ maps bounded sets to bounded sets, according to Theorem 2.4 , we can find a sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq H^{1}(\Omega)$ such that

$$
\left\{u_{n}\right\}_{n \geqslant 1} \subseteq K_{\varphi} \backslash\{0\}, \quad\left\|u_{n}\right\| \longrightarrow+\infty
$$

Hence the u_{n} 's are nontrivial solutions of (1.1) and the regularity theory of Wang [22] implies that

$$
\left\{u_{n}\right\}_{n \geqslant 1} \subseteq C^{1}(\bar{\Omega})
$$

References

[1] G. D'Aguì, S.A. Marano, N.S. Papageorgiou, Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433:2 (2016), 1821-1845.
[2] Y. Bai, L. Gasiński, N.S. Papageorgiou, Nonlinear nonhomogeneous Robin problems with dependence on the gradient, Bound. Value Probl., 2018, No. 17, 24.
[3] L. Gasiński, D. O'Regan, N.S. Papageorgiou, Positive solutions for nonlinear nonhomogeneous Robin problems, Z. Anal. Anwend., 34 (2015), 435458.
[4] L. Gasiński, N.S. Papageorgiou, Nonlinear Analysis. Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[5] L. Gasiński, N.S. Papageorgiou, Dirichlet problems with double resonance and an indefinite potential, Nonlinear Anal., 75 (2012), 4560-4595.
[6] L. Gasiński, N.S. Papageorgiou, Pairs of nontrivial solutions for resonant Robin problems with indefinite linear part, Dynamic Systems and Applications 26 (2017) 309-326.
[7] L. Gasiński, N.S. Papageorgiou, Nodal solutions for nonlinear nonhomogeneous Robin problems with an indefinite potential, Proc. Edinb. Math. Soc., published online, doi:10.1017/S0013091518000044.
[8] L. Gasiński, N.S. Papageorgiou, Positive solutions for the Robin pLaplacian problem with competing nonlinearities, Adv. Calc. Var., published online, doi:10.1515/acv-2016-0039.
[9] L. Gasiński, N.S. Papageorgiou, Resonant Robin problems with indefinite and unbounded potential, Math. Nachr., published online, doi:10.1002/mana.201600174.
[10] G. Li, C. Wang, The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition, Ann. Acad. Sci. Fenn. Math., 36:2 (2011), 461-480.
[11] G. Li, C. Yang, The existence of a nontrivial solution to a nonlinear boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
[12] S. Luan, A. Mao, Periodic solutions for a class of non-autonomous Hamiltonian systems, Nonlinear Anal., 61 (2005), 1413-1426.
[13] D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
[14] N.S. Papageorgiou, F. Papalini, Seven solutions with sign information for sublinear equations with unbounded and indefinite potential and no symmetries, Israel J. Math., 201:2 (2014), 761-796.
[15] N.S. Papageorgiou, V.D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256:7 (2014), 2449-2479.
[16] N.S. Papageorgiou, V.D. Rădulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potentia, Trans. Amer. Math. Soc., 367:12 (2015), 8723-8756.
[17] N.S. Papageorgiou, V.D. Rădulescu, Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Rev. Mat. Complut., 29:1 (2016), 91-126.
[18] N.S. Papageorgiou, G. Smyrlis, On a class of parametric Neumann problems with indefinite and unbounded potential, Forum Math., 27 (2015), 17431772.
[19] D. Qin, X. Tang, J. Zhang, Multiple solutions for semilinear elliptic equations with sign-changing potential and nonlinearity, Electron. J. Differential Equations, 2013, No. 207, 1-9.
[20] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, AMS, Providence, RI, 1986.
[21] S. Shi, S. Li, Existence of solutions for a class of semilinear elliptic equations with the Robin boundary value condition, Nonlinear Anal., 71 (2009), 3292-3298.
[22] X.J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93:2 (1991), 283-310.

[^0]: *Corresponding author: Leszek.Gasinski@ii.uj.edu.pl

