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1 Introduction

Let © C RY be a bounded domain with a C%-boundary 2. In this paper, we
study the following semilinear Robin problem:

{ —Au(z) + f(z)u(z) = f(zvu(z)) in ©, (1.1)
% +B(z)u = 0 on 0. '
In this problem the potential function £ € L*(£2), s > N is in general indefi-
nite (that is, sign changing). The reaction term f(z,() is a Carathéodory func-
tion (that is, for all ( € R, z — f(z,() is measurable and for almost all z € Q
¢ — f(z,() is continuous). We assume that f(z,-) has almost critical growth
(so, it does not have in general the usual subcritical growth) and f(z,-) is su-
perlinear but without satisfying the usual in such cases Ambrosetti-Rabinowitz
condition. Instead we employ a more general condition which incorporates in
our framework superlinear reactions with slower growth near oo which fail to
satisfy the Ambrosetti-Rabinowitz condition. Near zero we assume that f(z, )
is strictly sublinear. In the boundary condition, g—x, for u € H*(2), stands for
the usual normal derivative defined by extension of the continuous linear map

CHQ) > ur— g—z = (Du,n)gn,
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with n(-) being the outward unit normal on 02. The boundary coefficient
B € Wh(9Q) with B(z) > 0 for all z € Q2. When 8 = 0, we have the usual
Neumann problem.

Recently there have been existence and multiplicity results for semilinear
elliptic equations with general potential. We mention the work of Gasinski-
Papageorgiou [5], Li-Wang [10], Papageorgiou-Papalini [14], Qin-Tang-Zhang
[19] (Dirichlet problems), Papageorgiou-Radulescu [16], Papageorgiou-Radulescu
[17] (Neumann problem) and Papageorgiou-Smyrlis [18], Shi-Li [21] (Robin
problems). Superlinear equations were considered only in the context of Dirich-
let problems under more restrictive conditions on the data by Li-Wang [10] and
Qin-Tang-Zhang [19]. For other boundary value problems with Robin bound-
ary condition we refer to Bai-Gasinski-Papageorgiou [2], Gasinski-O’Regan-
Papageorgiou (3], Gasinski-Papageorgiou [6, 7, 8, 9].

In this paper using variational tools based on the critical point theory, we
prove two theorems. The first is an existence theorem producing a nontrivial
smooth solution. In the second theorem, under a symmetry condition on f(z,-),
we produce an unbounded sequence of nontrivial smooth solutions.

2 Mathematical Background

Let X be a Banach space and let X™* denote its topological dual. By (-, -) we
denote the duality brackets for the pair (X*, X). Given ¢ € C}(X;R), we say
that ¢ satisfies the (C)*-condition, if the following property holds:

“Every sequence {un}n>1 C X such that sup ¢(u,) < 400 and
n>1

(L + [[un]))¢' (un) — 0 in X7,

admits a strongly convergent subsequence which converges to a crit-
ical point of ¢.”

Remark 2.1. This is a slightly more general version of the well-known Cerami
condition, which says that:

“Every sequence {u,}n>1 € X such that |p(z,)] < M for some
M >0 and all n € N and

(L + flunl)¢'(un) — 0 in X7,
admits a strongly convergent subsequence.”

This is a compactness type condition on the functional ¢ more general than
the classical Palais-Smale condition. The Cerami condition suffices to have a
deformation theorem from which one can derive the minimax theory of the
critical values of ¢o. The Cerami condition and the Palais-Smale condition are
equivalent if ¢ is bounded below (see Motreanu-Motreanu-Papageorgiou [13, p.
104]).
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Also, suppose that X admits a direct sum decomposition
X =YgV (2.1)

We say that ¢ € C1(X;R) has a local linking at u = 0 with respect to (2.1), if
there exists » > 0 such that

for all y € Y, with ||y

ply) < 0 <,
p(w) = 0 forallveV, with |[v|| <7

The following existence theorem is due to Luan-Mao [12, Theorem 2.2].

Theorem 2.2. If p € C1(X;R) satisfies the following assumptions:
(i) ¢ has a local linking at u = 0 with respect to (2.1);

(ii) ¢ satisfies the (C)*-condition;

(1ii) ¢ maps bounded sets into bounded sets;

(iv) for every finite dimensional subspace Z of V' we have

o(u) — —oo forallueY & Z, with |ul]| — +oo,
then ¢ has at least two critical points.

Remark 2.3. According to the above theorem, ¢ has at least one nontrivial
critical point.

Another result that we will use is the so called “Symmetric Mountain Pass
Theorem” of Rabinowitz [20] (see also Gasinski-Papageorgiou [4, p. 688]).

Theorem 2.4. If X is an infinite dimensional Banach space with a direct sum
decomposition

X =Y® E withY finite dimensional,

o € CY(X;R) is even, satisfies the Cerami condition, ©(0) =0 and
(i) there exist n,r > 0 such that

SD‘EO&BT Z

with 0B, = {u e X : |lu| =r};
(ii) for every finite dimensional subspace Z C X there exists o = o(Z) > 0 such
that

9O‘Z\(ZmBg) < 0
with B, ={u € X : |ju|| < o},

then ¢ admits an unbounded sequence of critical values.

Next, let us recall some basic facts about the spectrum of u — —Au+£(2)u,
u € H'(Q), with Robin boundary condition. For details see D’Agui-Marano-
Papageorgiou [1].
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First we introduce the spaces which we will use in the sequel. These are:
e the Sobolev space H!(Q);
e the Banach sapce C''(Q);
e the boundary Lebesgue spaces L9(0€2) with 1 < ¢ < +o0.

We know that H'(f2) is a Hilbert space with inner product given by

(u,v)gr = / uwvdz + / (Du, Dv)gn dz  Yu,v € HY(Q).
Q Q
By || - || we denote the corresponding norm defined by
1

lull = (llullz + 1Dull3)®  Yue HY(Q).

The Banach space C1(Q) is an ordered Banach space with positive (order) cone
C, = {uecCYQ): u(z) =0 for all z € Q}.

This cone has a nonempty interior given by

D, = {ueCy:u(z) >0 for all z € Q}.

On 092 we consider the (N — 1)-dimensional Hausdorff (surface) measure o(-).
Using this measure, we can define in the usual way the “boundary” Lebesgue
spaces L1(0€2) (1 < g < +00). We know that there is a unique continuous linear
map vo: HY(Q2) — L?(09), known as the “trace map”, such that

Y(u) = ulog Yue HY(Q)NC(Q).
So, the trace map assigns boundary values to all Sobolev functions. This map

is compact into L?(09) for all ¢ € [1, %) if N > 3 and into L?(0%2) for all

q>1if N =1,2. In addition, we have
keryg = Hy(Q) and im~y, = H%’Q(BQ).

In what follows, for notational economy we drop the use of . All restrictions
of Sobolev functions on 02 are understand in the sense of traces.
Suppose that
£e L), s>N

and
BeWh>(00Q) with B(2) >0 Vz e 0.

Consider the following linear eigenvalue problem:

{ —Au(z) +£(2)u(z) = :\\u(z) in Q,

%u 4 B(z)u = 0 on d. (2.2)

Consider the C'-functional v: H!(Q) — R defined by

y(u) = ||Du||§+/9§(z)u2dz+ aQB(z)uZda Yu € HY(Q).
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From D’Agui-Marano-Papageorgiou [1], we know that there exists y > 0 such
that

y(w) +pllullz = collull® Vue HY(Q), (2.3)
for some ¢y > 0. Using (2.3) and the spectral theorem for compact self-adjoint
operators on a Hilbert space, we can show that the spectrum of (2 2) consists
of a Strlctly increasing sequence {)\k} k>1 of eigenvalues such that )\k — 400.

By E()\k) k € N, we denote the corresponding eigenspace. We have
e )\, is simple (that is, dim E()\l) =1) and

o= nf{| W e ), u#()}; (2.4)

|ul[?

e for every m € N, m > 2, we have

Am = nf{ (U)UEEBE(Xk),u;&O}

R
= sup{% : UEEBE(X’C)’ u#0}; (2.5)
k=1

e for each k € N, E(//\\k) is finite dimensional, E(//\\k) C CY(9) and it has the
“unique continuation property” (UCP for short), which says that if u € E(\x)
vanishes on a set of positive measure in ), then u =0. _
The above properties imply that the elements of E(\;) do not change sign,
that is, R
E()\l) - C+ U (—C+).
In fact, if in addition we assume that £ € L™, then
EMA)\{0} € Dy U(=Dy).
We set
my = min{k € N: Xk>0} and m_ = max{k e N: /):k<0}.
Also, by | - |x we denote the Lebesgue measure on RY. Let
N .
o _ | w3 i N =3,
Too if N=1,2
(the critical Sobolev exponent) and if ¢ € C1(X;R), then
K,={ueX: ¢'(u) =0}
(the critical set of ).
By A € L(HY(Q), H(2)*) we denote the operator defined by

(A(u),h) = /Q(Du,Dh)RN dz Yu,h € H Q).

Moreover, for g € (1,400), by ¢’ € (1,00) we denote the conjugate exponent of
q, that is,

1 1
q g
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3 Existence Theorem

In this section we prove an existence theorem for problem (1.1). We impose the
following conditions on the data of (1.1).

H(&): £ L°(2), s> N.

H(B): B € W2 (0Q) with 8(z) = 0 for all 2z € 9.

Remark 3.1. When § = 0, we have the usual Neumann problem.

Hi: f: QxR — R is a Carathéodory function such that

(i) for every p > 0, there exists a, € L*°(2) such that

1f(2, Q)] < ap(z) foraa. zeQ, all|{| <o

and fe0
Z, B . |
¢otoo |22 = 0 uniformly for a.a. z € Q;
(ii) if
¢
F(z,¢) = / f(z,s)ds
0
and
e(z,¢) = f(20)¢—2F(z,0),
then .
lim ﬁ = +oo uniformly for a.a. z € )
(—*+o0 CQ

and there exist d € L'(2) and k € N such that

e(z,8¢) < ke(z,{)+d(z) foraa.zeQ, all(eR, se]0,1].

(iii) we have

f(z,¢)

lim ——= = 0 uniformly for a.a. z € 2
¢—0 ¢
and there exists d > 0 such that

F(z,¢) < 0 fora.a. zeQ, all|(] <.

Remark 3.2. Hypothesis H; (i) is more general than the usual subcritical poly-
nomial growth condition which says that

1f(z,Q)] < a(z)1+¢|"") foraa. z€Q, all ( €R,
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with a € L>®(Q), 2 < r < 2*. Hypothesis H; (i) implies that given £ > 0, we
can find a. € L*°(2) such that

1£(2,0)] < ac(z)+¢el¢c|¥ ™! foraa. zeQ, all ( e R. (3.1)

So, f(z,-) exhibits almost critical growth. The lack of compactness in the em-
bedding of H*(Q) into L? (Q) is a source of difficulties in the study of problem
(1.1). We overcome these difficulties without any use of the concentration-com-
pactness principle. Instead our method of proof uses Vitali’s theorem (the ex-
tended dominated convergence theorem; see Gasinski-Papageorgiou [4, p. 901]).

Hypothesis Hy(i7) is the superlinearity condition on f(z,-). It implies that

f(z,9)

lim ——* = 400 uniformly for a.a. z € €2,
(—Foo

that is, f(z,-) is superlinear. This superlinearity of f(z,-) is not expressed
using the usual in such cases Ambrosetti-Rabinowitz condition. Recall that the
Ambrosetti-Rabinowitz condition says that there exist » > 2 and M > 0 such
that

0 < rF(2,¢) < f(2,¢)¢ fora.a. zeQ, all |¢| > M, (3.2)

and
0 < essﬂian(-,:I:M). (3.3)

Integrating (3.2) and using (3.3), we obtain the weaker condition
al¢|” < F(z,() fora.a.zeQ, all|(| > M, (3.4)

with ¢; > 0. From (3.4) and (3.2), it follows that the Ambrosetti-Rabinowitz
condition implies that f(z,-) has at least (r — 1)-polynomial growth. This ex-
cludes from consideration superlinear functions with slower growth (see the ex-
amples below). Our hypothesis Hy(ii) is a more general version of a condition
used by Li-Yang [11]. It is satisfied if there exists M > 0 such that for almost

all z €
¢ — f(ZC’ S is nondecreasing on [M, +00),
¢ — f(? 9 is nonincreasing on (—oo, M].

Hypothesis H; (ii7) implies that f(z,-) is strictly sublinear near zero. Also, from
that hypothesis we have that

f(z,0) = 0 fora.a. ze€ Q.

Therefore the trivial function u = 0 is always a solution of problem (1.1). Our
aim is to produce nonzero solutions.
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Example 3.3. The following functions satisfy hypotheses Hy. For the sake of
simplicity we drop the z-dependence.

r—2,- T—2 .
£ = {K| C—lcm2e i e <,

¢Ing if ¢l >1,
S 21+ [¢)) — g pisfg) +¢ i <1,
f2(Q) = 4 K[ if —1<¢<1,
2L+ [¢) = i) —¢ i ¢>1,
with 2 <7 <r < +o0 and ¢ = 15 — 55

Note that f1 fails to satisfy the Ambrosetti-Rabinowitz condition, while fo
does not have a subcritical polynomial growth.

Consider the energy (Euler) functional for problem (1.1), ¢: H}(Q) — R
defined by

o(u) = =y(u) — /Q F(z,u)dz Yue€ HY(Q).
Evidently ¢ € C1(H'(Q)).

Proposition 3.4. If hypotheses H(E), H(B), Hy hold, then the energy func-
tional ¢ satisfies the (C)*-condition.

Proof. We consider a sequence {u,}n>1 C H'() such that
o(up) < My Vn €N, (3.5)
for some M; > 0 and
L+ lunl)e (un) — 0 in H'(Q)". (3.6)
From (3.6) we have

‘<A(un),h>+/§(z)unhdz+ ﬁ(z)unhda—/ f(z,up)hdz
Q oN Q

enl[h]
1+ Jun

with &, \, 0. In (3.7) we choose h = u,, € H'(2). We obtain

Vh € H(Q), (3.7)

—y(un) + /Q f(z,up)updz < e, VneN. (3.8)
From (3.5) we have

~(un) —/QQF(z,un) dz < 2M; VYneN. (3.9)
We add (3.8) and (3.9) and obtain

/e(z,un)dz < My VneN, (3.10)
Q
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for some Moy > 0.
Claim: The sequence {up}n>1 C H'(Q) is bounded.

We argue indirectly. So, suppose that the Claim is not true. Passing to a
suitable subsequence if necessary, we may assume that

|un|| — 400 asn — +oo. (3.11)

We set y,, = ”Z—””, n € N. Then |ly,|| = 1 for all n € N and so, passing to a
next subsequence if necessary, we may assume that

Yp —y in H'(Q) and y, — y in L%(Q) and in L?(09). (3.12)
First we assume that y # 0. Let Qo = {z € Q: y(z) # 0}. Then |[Q|n > 0 and
lun(2)] — —+oo for a.a. z € Q.

Hypothesis Hy(ii) implies that

Fatou’s lemma implies that

/ Fun(2) gy (o (3.13)
a0 llunll?

(see hypothesis Hq(ii)). Hypotheses H; (i) and (i7) imply that we can find ¢ > 0
such that
—co < F(z,() foraa.zeQ, all ( €R.

Therefore
F n F y Un F )y 'n
/ (2, u gZ)) g - / (2, u gZ)) dz+/ (2, u gZ)) @
o llunll 2  llunll o, lunl
F(z,u,(z c
> [ EEmBa 2,
o llunl [ |
S0 P
/ (z,ungz)) dz — +o0 (3.14)
o llunll
(see (3.13) and (3.11)). From hypothesis H;(i7), we have
2kF(2,() < kf(z,{)¢+d(z) fora.a.ze(, all (eR. (3.15)

From (3.7) with h = u,, € H(Q), we have

/f(z,un)undz < Ms+vy(u,) Vn €N,
Q
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for some Mz > 0, so
Qk/ F(z,un)dz < My+ ky(u,) Vn €N,
Q
for some My > 0 (see (3.15)), thus

F n M.
2k/L7‘2)dz < s 4 ky(yn) Vn€EN,
o llunll lunl

hence

F(z,u,
/%dz < Ms VYneN, (3.16)
Q n

for some M5 > 0 (recall that ||y,|| = 1 for all n € N). Comparing (3.14) and
(3.16), we reach a contradiction.

Now suppose that y = 0. Let ¥ > 0 and set v,, = (219)%% for all n € N.
From (3.12) and since y = 0, we have

vn % 0 in HY(Q) and v, — 0 in LT and in L2(0Q).  (3.17)

Let c3 = sup ||[v, |3 < 400 (see (3.17)). Hypothesis H; (i) implies that given
n>1

e > 0 we can find ¢, > 0 such that

|F(z,¢)| < 2i|C|2* +c. foraa. zeQ, al (eR. (3.18)
CE

Suppose that £ C () is a measurable set and |E|y < 55-. Then

/ F(z,v,)dz
E
(see (3.18)), so

2t clQn < e

< [IPGwld < 5o,
{F(-,vn(-))}n>1 € LY(Q) is uniformly integrable. (3.19)

Also, we have
F(z,v,(2)) — 0 fora.a.z € Q. (3.20)

From (3.19), (3.20) and Vitali’s theorem (the extended dominated convergence
theorem; see Gasinski-Papageorgiou [4, p. 901]), we have

/F(z,vn)dz — 0. (3.21)
Q

From (3.11) we see that we can find ng € N such that

N

1
Tan <1 Vn>ng. (3.22)

0 < (29)
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We choose t,, € [0, 1] such that
o(tpu,) = max{e(tu,): 0<t<1} VneN. (3.23)

From (3.22) and (3.23), we have

oltttn) > plon) = 97(yn) — /Q F(z0n) d
= 9(y(ym) + illgmllZ) /Q (F(zvn) + Opu2) d

> e — / (F(z,vn) + Jpyz) dz  Vn = ng (3.24)
Q

(see (2.3) and recall that |ly|]| = 1 for all n € N). Recall that y = 0. So, from

(3.12) (note that 2% > 2) and (3.21) we have

/ (F(z,v,) +dpy2) dz —> 0.
Q
So, we can find n; € N, n; > ng, such that
1

/ (F(z,vn) + 19/%4}%) dz < 51960 Vn > nq. (3.25)

Q
Returning to (3.24) and using (3.25), we obtain

1
O(tpun) = 51900 Vn > ny.

But ¢ > 0 is arbitrary. So, we infer that

o(tpuy) —> +o0. (3.26)
We have
o(up) < My ¥YneN and ¢(0) = 0 (3.27)
(see (3.5)). From (3.23), (3.26) and (3.27), we see that we can find ny € N such
that
t, € (0,1) Vn = ns. (3.28)

So, we have
d
Ego(tun)h:tn =0 Vn=n

(see (3.23)), so
<¢/(tnun)7 tnun> =0 Vn = No
(using the chain rule and (3.28)), thus

Y(tnun) = /Qf(z,tnun)(tnun)dz Vn = na. (3.29)
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Then (3.28) and hypothesis H;(ii) imply that

/e(z,tnun)dz < k/e(z,un)dz+||d||1 Vn = na,
Q Q

SO

/f(z,tnun)(tnun) dz < k e(z,un)dz—l—/2F(z,tnun)dz—|—Hd||1
Q Q Q

< M6—{—/ 2F (z,tpuy) dz  Vn = no, (3.30)
Q

for some Mg > 0 (see (3.10)). We return to (3.29) and use (3.30). Then
20(thun) < Mg Vn = no. (3.31)
Comparing (3.26) and (3.31) we have a contradiction. This proves the Claim.

On the account of the Claim, passing to a subsequence if necessary, we may
assume that

Up — w in H'(Q) and wu, — u inL%(Q) and in L?*(09). (3.32)

Let ¢4 = sup ||upl|2x < 400 (see (3.32)). Hypothesis Hy(i) implies that given
n>1
€ > 0 we can find ¢, > 0 such that
£

2*
2cy

If(z,0)| < (' +¢ foraa zeQ, all ¢ eR. (3.33)

For a measurable set E C (), we have

\ [ G —wds| < [ 15w o - uld:
E E

< i/ |un|2*1|un—u|dz+a4/|un—u|dz VneN  (3.34)
204 E Q

(see (3.33)). Note that

ua|¥ 7t € LEY(Q) and |u, —u| € L¥(Q)

*

(recall that 2* — 1 = (22*), ). Using Hélder inequality, we have

€ / |
- u
2t Jp "

2% —1

N, —uldz

€
< s lullye " lun —uf2s < 5 VneN. (3.35)
2c] 2
Similarly, we have
L Sk
e/ up = dz < BT fun — ullsr < 2.ca E|TT. (3.36)
E
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We assume that

(27
e 1
FE < [ —-= . .
|E|n (40 ) (3.37)

Using (3.37) in (3.36), we see that

/c}/ lu, —u|dz < ° WneN. (3.38)
B 2
From (3.35) and (3.38), we see that given ¢ > 0, we can find § = (%56104)(2*)/
such that
if |Ely < 5, then sup/ | f(z,un)] U —u|dz < g,
n>2lJE
SO
the sequence {f(-, un(-))(up — u)(-) }n>1 is uniformly integrable.
For at least a subsequence, we have
f(z,un(2)(uy —u)(z) — 0 for a.a. z € Q.

Therefore Vitali’s theorem implies that

/ £z ) — w) dz — 0. (3.39)

Q

In (3.7) we choose h = u,, —u € H'(2), pass to the limit as n — +oo and use
(3.32) and (3.39). Then

lim (A(un),u, —u)y = 0,

n—-—4o00

SO
[Dunlls — [[Dull2,

thus
U, — u in HY(Q)

(by the Kadec-Klee property; see Gasinski-Papageorgiou [4, p. 911]) and hence
¢ satisfies the (C')*-condition. O

We consider the following orthogonal direct sum decomposition

HY(Q) = H_9V, (3.40)

with .
H. = PEMN) and V = HY = E(0)a Hy, (3.41)

1=1

where H; = E(Xz)

i2m+
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Proposition 3.5. If hypotheses H(§), H(3) and Hy hold, then ¢ has at w =0
a local linking with respect to the decomposition (3.40).

Proof. From (3.41), every v € V admits a unique sum decomposition
v = ' +70, witho® € F(0), 1€ Hy.

The eigenspace E(0) is finite dimensional. So, all norms on E(0) are equivalent
and we can find ¢5 > 0 such that

[0%se < )00 Vo© € E(0). (3.42)

Let § > 0 be as postulated by hypothesis H;(iii). We introduce the following
measurable subsets of (2

0 = {zEQﬁ)\(z)\gg} and Qy = Q\ Q. (3.43)
Suppose that z € 2. We have

()] < PO)| + [0(2)] < C5||UO||+g (3.44)

(see (3.42), (3.43)).
So, if 01 = % and v € V satisfies ||v|| < g1, then from (3.44) we have

v(z)] < 6 Vze

(recall that [[v°| < ||v|]), so

/ F(z,v)dz < 0 YveV, ||v] <o (3.45)
O

(see hypothesis Hy (iii)). Hypotheses H;(i), (i7i) imply that given & > 0, we can
find ¢ = c(e) > 0 such that

F(z,¢) < eC?+ CGIC]Q* for a.a. z € Q, all ( € R. (3.46)
Suppose that v € V satisfies ||v|| < g1 and z € Q5. Then
w(z)] < [v°(z)]+10(2)] < 2[0(2)] (3.47)
(see (3.42), (3.43)). From (3.46) and (3.47), we have

/ F(z,v(2)dz < 4e|[0)3 + er|[Bll3. Yo eV, ol < a1, (3.48)
2

for some ¢; > 0. Exploiting the orthogonality of the component spaces in (3.41),
we have

1 . - L O*
plv) = 57(0) —/ F(z,v)dz > (cs —42)[0]” — col[0]]* Vv eV, |v] < a1,
Q
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for some cg,cg > 0 (recall that v € E(0), 7 € H, and see (3.45), (3.48)).
Choosing ¢ € (0, %), we see that

p(v) > cwllol® —elT]* Yo eV, v] <er, (3.49)

for some c19 > 0. Since 2* > 2, from (3.49) and by choosing 02 € (0, min{1, o1 })
small, we have
e(v) >0 YoeV, 0<|v| < oo (3.50)

Hypotheses Hj(i), (i4i) imply that given € > 0, we can find ¢;; = ¢11(¢) > 0
such that

F(z,0) > —%@ —en|¢r foraa. zeQ, all¢ €R. (3.51)
Then for w € H_, we have

2*
Y

1
o) = 5@~ [ Flamds < —eull® + el
Q

for some cj12,c13 > 0 (choosing € > 0 small enough). Since 2* > 2, choosing
@3 € (0,1) small, we have

p(@) < 0 VueH-, [[ul < os (3.52)

From (3.50) and (3.52), it follows that ¢ has at u = 0 a local linking with respect
to the decomposition (3.40). O

Proposition 3.6. If hypotheses H(&), H(B) and Hy hold and E C 'V (see
(3.41)) is a finite dimensional subspace, then p(u) — —o0 as ||u|| — oo with
uce H_ @ k.

Proof. Hypotheses H(i), (ii) imply that given any n > 0, we can find c¢14 =
c14(n) > 0 such that

F(2,0) > n¢? —cyy foraa. zeQ, all ( €R. (3.53)

The space H_ ¢ FE is finite dimensional and so all norms are equivalent. Then
for u € H_ & E we have

o) = 2y(u)— / Fzu)dz < (e1s —m)llul® + e,

for some ¢15,c16 > 0 (see (3.53)). Choosing 1 > ¢15, we see that

p(u) — —oo  as ||ul]] = +oo0, withue H_ @ E.
Now we are ready for the existence theorem.
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Theorem 3.7. If hypotheses H(E), H(B) and Hy hold, then problem (1.1)
admits a nontrivial solution ug € C*(Q).

Proof. Evidently ¢ maps bounded sets to bounded sets. This fact and Proposi-
tions 3.4, 3.5 and 3.6, permit the use of Theorem 2.2 and find ug € H'(Q) such
that

ug € Ky \ {0}.
We have

(A(uo),h>+/Q§(z)u0hdz+ 8Qﬁ(z)uohala = /Qf(z,uo)hdz Vh € H'(Q),

SO

—Aug(2) +£(2)uo(z) = f(z,u0(2)) nQ,
{ %#Lﬁ(z)uo = 0 ondN (3.54)
(see Papageorgiou-Radulescu [15]). Let
. B 0 if |uo(z)| <1,
a(z) = { f(ig(oz()Z)) it ug(2)] > 1 (3.55)
2o —  f(Eue(z) i fue(z) <1,
bz) = { 0 Juo)| > L (3.56)

Hypotheses Hi (i) and (ii7) imply that given € > 0, we can find ¢17 = ¢17 > 0
such that

(20| < el¢]* P+ e7|¢] foraa. zeQ, all ¢ € R. (3.57)
Using (3.57) and the Sobolev embedding theorem, we see that
a e L>(Q).
Also, from (3.35) and hypothesis H; (i), we have
b e L™(Q).
From (3.54) we obtain

—Aug(z) = (a(z) —&(2))uo(2) +b(z) inQ,
{ Guo 4+ B(z)ug = 0 on O (3.58)

Note that @ — & € L= () (see hypothesis H(£)) and b € L>®(Q). So, using
Lemma 5.1 of Wang [22], we have that

Uy € LOO(Q)
(see (3.58)). Hypotheses Hy(i) and H () imply that

f(uo(r) —&(C)uo(-) € L¥(Q).
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So, Lemma 5.2 of Wang [22] (the Calderon-Zygmund estimates) implies that

ug € W2*(Q),
thus
Lo : N
ug € C*(Q), witha=1-——>0
s
(by the Sobolev embedding theorem). O

4 Infinitely Many Solutions

In this section we prove a theorem producing an unbounded sequence of distinct
smooth solutions.
We introduce the following conditions on the reaction term f(z,():

Hy: f: QxR — Ris a Carathéodory function such that f(z,-) is odd for almost
all z € ©Q and hypotheses Hs(7) and (i7) are the same as the corresponding
hypotheses H; (i) and (i1).

Remark 4.1. Note that in this case no condition near zero is imposed (see
hypothesis Hq(iii)). Instead, we have a symmetry condition on f(z,-), namely
we require that f(z,-) is odd.

Recall that
H'(Q) = H_-®E(0)® Hy,

with .
H. = PEN) and Hy = P EN).
i=1 izmy
Proposition 4.2. If hypotheses H (&), H(3) and Hy hold, then there exist n,r >
0 and a subspace 2 C H, such that

SD‘EO@BQ zn >0

Proof. Hypothesis Hs(i) implies that given € > 0, we can find ¢17 = ¢17(¢) > 0
such that

F(z,¢) < el¢|* +eir¢] foraa. zeQ, all ¢ € R. (4.1)

For uw € H,, we have

1 1 x
P = 33— [ Fewds > 3300 —lull - crlul

[l

1 .
57(“)—5018%“2 _019\/T
An

WV
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C19

o~

An
C20 * C20 C19
= (2~ cershul® ) + (BNl - ). @2

VA
for some ci13,c19,c90 > 0 and all n € N, n > my (recall that u € Hy). For
e € (0,1), we can always find uy € Hy, ||ug|] < 1 such that

> exllull® - ccasful]* — il

C20

5 l[ol® — ecas|[@o|* > 0 (4.3)

(recall that 2 < 2*). Then we choose n € N, n > m such that

2
An > <@%>
ca0 ||to|

(recall that Xn — +00). We consider the following orthogonal direct sum de-
composition of H!(Q):
HY(Q) = YoE,

with )
Y = PEXN) and E =Y = PEN).
i=1 i>n
Then for u € E with |Jul| = ||ug|| = r < 1, we have
C ~ —~ *
p(u) = n = %HUOH2 —ecisllaol* > 0
(see (4.2) and (4.3)). O

Proposition 4.3. If hypotheses H(E), H(B) and Hy hold and Z C HY(Q) is a
finite dimensional subspace, then there exists o = o(Z) > 0 such that

‘P’z\(ZnBQ) < 0.

Proof. For u € Z C HY(2), we have the unique sum decomposition
v = u+u’ + 1,

with w € H_, v’ € E(0), u € H,. Exploiting the orthogonality of the compo-
nent space in this decomposition, we have

o) = 3@+ 5@ - [ Pl

Q
1 1
S + (@) — nllul3 + ez
1 AN AN fr—
5@ = nllal3 — mllal - w3 +

N

N
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< —can ([l + @ + [u0)?) + e = —caollull? + e

for some co1,c220 > 0 by choosing n > 0 big enough (see (3.53), use the
Pythagorean theorem and the fact that w € H_). So, we can find o > 0
big enough such that

90|Z\(ZmBQ) < 0.

Now we are ready for the multiplicity theorem.

Theorem 4.4. If hypotheses H(E), H(B) and Hy hold, then there exists a
sequence of nontrivial solutions {un,}n>1 C C1(Q) of (1.1) such that |ju,| —
+o0.

Proof. Propositions 4.2 and 4.3 permit the use of Theorem 2.4. Since ¢ maps
bounded sets to bounded sets, according to Theorem 2.4, we can find a sequence
{untn>1 C HY(Q) such that

{un}n>1 g Ktp \ {0}7 ||un|| — +00.

Hence the w,’s are nontrivial solutions of (1.1) and the regularity theory of
Wang [22] implies that B
{untn>1 C Cl(Q)-
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