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Introduction

The minimum energy digital control has been one of main prob-
lems in control theory since many years. This problem has been 
presented for example in classic book Athans Falb (1966). Fun-
damentals of digital control are given by Isermann in 1989 and 
1992, the modeling and control of uncertain parameter systems 
with two-dimensional uncertain parameter space have been 
analysed by Oprzędkiewicz and they are summarized in mon-
ograph from 2009, the control of this class of plants has been 
analysed for example by Mitkowski and Oprzędkiewicz in 2011 
and 2012.

This paper is devoted to present the synthesis of digital con-
trol system for a class of uncertain parameter systems described 
by state equation or equivalent transfer function. The uncertain 
parameters of the plant are described by interval numbers. The 
control system is expected to assure the realization of servo con-
trol with minimal energy consumption. Results can be employed 
to control of the oriented PV system or another similar plant.

The paper is organized as follows: at the beginning the con-
sidered class of control plants is given. Next the discrete control 
system and its optimization are discussed. Finally the numerical 
example and final conclusions are presented.

Materials and Methods 

The plant under consideration

The most general model of the plant under consideration is an 
uncertain-parameter, linear state space equation:
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In equation (1) x(t) e R2, u(t) e R, y(t) e R. A state matrix of the 
system is a Frobenius matrix, parameter q describes the uncer-
tainty of the model and it is described by the positive interval 
number.
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where:
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Control and output matrices are well known and they are 
equal: 
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A transfer function G(s,q) = C(sI-A(q))-1B can be assigned 
with the use of (1) – (4) and it is a function of the uncertain 
parameter q:
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The plant described by (1)-(5) will be controlled with the use 
of discrete controller. This implies, that A/D and D/A converters 
working synchronically should be applied. The both elements 
build so called process interface. The scheme of the plant with 
both elements is shown in the figure 1. 
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Figure 1. Continuous control plant with D/A and A/D converters
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To describe the discrete plant shown in figure 1 the continu-
ous-time state space equation (1) – (4) should be transformed to 
the discrete form with the use of following relations:
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A discrete transfer function of the plant shown in the Figure 1 
is described as follows:
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If the plant is described by the continuous transfer function 
(5), then the discrete transfer function (7) can be expressed as 
follows:
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The discrete transfer function (8) is a function of uncertain 
parameter q and the sample time Ts and it can be written in the 
form analogical to (5):
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In (9) v and w denote coefficients of numerator and denomina-
tor of (9) respectively. They are equal:
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During construction of a discrete system shown in Figure 1 
and described by (9) – (10) a crucial problem is the proper selec-
tion of the sample time Ts. The properly set sample time should 
assure the proper work of the control system for each value of 
uncertain parameter of the plant, described by the parameter q. 

The value of sample time Ts is determined both by the plant 
properties and the applied control algorithm. The sample time 
assign problem is one of fundamental in Control Theory and it 
was presented by many Authors, for example by Isermann (1989, 
1992). Additionally, in the considered case the uncertainty of the 
discrete system should not be greater, than the uncertainty of the 
continuous system (see Oprzędkiewicz 2009).

A closed-loop, discrete P control system

The uncertain-parameter plant described above can be con-
trolled with the use of digital controller. The general scheme of 
a discrete, closed – loop control system for plant under consider-
ation is shown in the Figure 2. 

In figure 2 r+(k) denotes a seat point, e+(k) denotes discrete er-
ror, u+(k) denotes discrete control signal, u(t) denotes continuous 
control signal, y(t) denotes a continuous process value and y+(k) 
denotes the discrete process value. 

For the control system shown in figure 2 an analytical rela-
tionship between „z” transform of the control system U+(z), “z” 
transform of seat point R+(z) and transfer functions Gc+(z) and 
G+(z) can be given. It has the following form:
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Assume, that to the control of the plant an ideal proportional 
(P) controller, described by the transfer function (12) should be 
applied:
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(12)

The proportional gain of the controller (12) should be assigned 
with respect to the following factors:

The closed-loop control system must be stable for each value 
of uncertain parameter of the system, described by the interval 
number q.

The cost function (described in the next section) for the con-
trol system should be minimal. 

With respect to (11) and (12) the discrete control signal can be 
expressed as follows: 
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In (13) v and w denote coefficients of numerator and denomi-
nator. They are expressed by (10).

Furthermore, the discrete transfer function G+
z(z)=Y+(z)/R+(z) 

of the discrete control system shown in Figure 2 is a function of 
uncertain parameter q, sample time Ts and gain kr: 
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The characteristic polynomial of the closed-loop system W(z) 
is also a function of uncertain parameter q, sample time Ts and 
gain kr. It is equal:

( ) ( )),(),(),(),(),,,( 0011
2

ssrsrsrs TqwTqvkzTqvkTqwzkTqzW ++++=  
(15)

 

Plant 
G(s) 

u(t) y(t) 
u+(k) 

y+(k) Controller  
Gc

+(z) 
r+(k) 

+ - 

e+(k) 

Figure 2. The closed-loop digital control system for the considered plant
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Roots of polynomial (15) build a spectrum of closed-loop sys-
tem Λz+, which can be defined as follows:
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The considered closed-loop control system is required to be 
practically implemented on the microcontroller platform. This 
implies, that the parameters of the discrete controller: sample 
time Ts and proportional gain kr must be possible to physical 
realization onto particular hardware platform. The most simple 
notation of these boundaries is to write they as intervals (17):
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The both controller parameters build the vector p defined by 
(18): 
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where kr and Ts are parameters possible to technical realiza-
tion in particular platform. All vectors p build the space of con-
troller parameters P, which is a subspace of R3:
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Set P defined by (19) can be interpreted as cube in space R3.
The spectrum (16) with the respect to (18), (19) can be written 

as follows: 
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Results and Discussion 

The stability discussion

The discrete transfer function (14) of the closed-loop control 
system is a function of parameters collected in the set P and 
uncertain parameter q. These parameters determine elementa-
ry possibilities of the considered control system. It is obvious, 
that the fundamental property of each control system is their 
stability. 

In the considered case the sufficient and necessary condi-
tion of stability is, the whole spectrum of the system must be 
localized inside the unit circle. The meeting of this condition is 
determined by values of parameter q and controller parameters 
p∈P and it can be expected, that for certain values of p and q the 
control system will be stable and for other it will not be stable. 

Vectors p assuring the stability of the system will be denoted 
by ps, and set of all vectors ps will be denoted by Ps. It can be 
expressed as follows:

 { } 2,1,1),(: =<∈= + ipqPpP zis λ  (21)

It is obvious, that Ps ⊆ P. The set Ps can be assigned analytical-
ly or numerically and it can be interpreted as three dimensional 
in R3.

The cost function

For the considered control system the classic servo control 
problem can be formulated: the process value y(t) should trace 
the seat point r(t) with minimal possible energy consumption. 
A function describing the energy consumption in the discrete 
control system can be most simply expressed as follows:

 
( ) ( )∑

∞

=

++ =
0

2
1 )(

k
s kupJ

 
(22)

At this moment remember, that the control system is going to 
be implemented onto microcontroller platform. This assumption 
can be additionally applied to estimation the energy consump-
tion in the system, because the energy consumption in micro-
controller system increases with the speed of work. Further-
more, the unique measure of this speed is the sample time Ts: 
the smaller sample time denotes the bigger speed of the system. 

In conclusion, the cost function for the considered control 
problem can be proposed as follows:
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where:
u+(k) – the discrete control signal in k – th step,
Ts – the sample time, 
h1, h2 – weight coefficients. 
The cost function (27) is a function of plant parameter q and 

controller parameters: Ts and kr. 
Weight coefficients in the function (23) are assigned to de-

scribe detailed real situation – for example, if the more impor-
tant is the speed of work the control system, the coefficient h2 is 
smaller, than the h1. 

Geometric interpretation of the cost function

The cost function (23) is a function of uncertain plant parameter, 
described by the interval number q and controller parameters, 
expressed by vector ps ϵ Ps. This implies, that the geometric in-
terpretation of this function in the “visible” space R3 can be not 
simple. To make the geometric interpretation of function (23) 
possible to propose we can notice, that: 

For the constant, selected value of the uncertain plant param-
eter q the cost function as a function of set Ps can be interpreted 
as a surface in the R3.

Consequently, for all values of uncertain parameter q, de-
scribed by an interval number [ ]qq,  the cost function can be 
interpreted as a body in R3 space, limited by border values of q. 

The both above notes allow us to present the geometric inter-
pretation of cost function (23). It is shown (for exemplary values 
of all parameters) in the figure 3.
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Remarks about the synthesis of an optimal controller

After the whole above considerations the discrete control system 
synthesis problem can be formulated as follows:

Inside the set of controller parameters Ps should be found such 
values of sample time Ts0 and gain kr0 for which the cost function 
(23) is minimal for each value of uncertain parameter q:

 ( ) ( ) QqqpJqpJ ss ∈≤ ++ ,,, 2020  (24) 

Notice, that for the fixed value of uncertain parameter q the 
cost function (23) is determined by controller parameters only. 

The analytical formula of cost function (23) is possible to for-
mulate, but it is extremally complicated and use it to minimum 
search is rather impossible. This implies, that the minimization 
of cost function (23) can be run with the use of numerical meth-
ods with support of geometric interpretation of cost function 
and additionally remark presented underneath. 

Remark 1

Assumptions:
Consider the interval dynamic system described by (1) – (5),
The system is controlled with the use of discrete proportional 

controller with gain kr and sample time Ts.
The ranges of controller parameters are also described by in-

terval numbers and they generate the set of controller parame-
ters Ps described by (21),

The uncertain parameter of the plant is described by interval 
number q.

Thesis:
For constant values of sample time Ts and uncertain parame-

ter q the cost function (23) is an increasing function of controller 
gain kr 

The proof of the above remark is presented underneath. 

At the beginning notice, that the cost function (23) can be ex-
pressed in the following form:
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The function f1(ps,q) described by (26) is a function both un-
certain parameter q and controller vector ps, the function f2(ps) is 
a function of sample time Ts only. This implies, that the function 
of proportional gain kc is the function (26) only. 

Next, in the case of continuous time the function (26) describ-
ing the energy consumption is expressed as the following inte-
gral: 
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The value of continuous integral (28) can be simply calculated 
analytically. It is equal:
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The function (29) does not have a minimum for positive q and 
positive kc and it increases for increasing value of parameter kc 
and it decreases for increasing value of the uncertain parameter q. 

Furthermore, the continuous function (28) can be interpreted 
as a boundary case of discrete function (26). It can be expressed 
as follows:
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Finally, if the continuous function (28) is increasing for posi-
tive, increasing kc and the equation (30) is kept, we can expect, 
that the discrete function (26) will behave analogically. This 
conclusion ends the proof.

Example

As an example consider the plant described by transfer function 
(5) with uncertain parameter described by interval number q = 
[1.0;2.0]. For this plant we construct the discrete control system 
shown in figure 2. The set Ps of controller parameters assuring 
the stability of the closed-loop control system is described as 
underneath:
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At the beginning a distribution of cost function (23) for rang-
es of controller parameters described by (31) was assigned. The 
cost function was calculated with the use of (23), both weight 
coefficients h1 and h2 were equal 1.0. The control function was 
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Figure 3. The geometric interpretation of the cost function (23)
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calculated with the use of equation (13), the step amplitude was 
equal 1.0. The distribution of cost function along the set Ps de-
scribed by (31) is shown in Figure 3. The vertex values of cost 
function (23) are written in Table 1.

Table 1. The vertex values of cost function (23) in Example

q

Ts 0.1 1.0 1.0 0.1
kr 0.5 0.5 2.0 2.0

1.0 10.0355 1.0490 3.0280 11.1175
2.0 10.0602 1.0639 1.5317 10.4036

For both values of uncertain parameter q the minimum of the 
cost function (23) for the example we deal with is localized in 
vertex ;s rT k    of the set Ps. The minimal value of for both border 
values of uncertain parameter q is shown in the Table 1 also.

From Figure 4 and Table 1 the following conclusions can be 
formulated: 

•  The sensitivity of the cost function (23) on the plant uncer-
tainty expressed by the parameter q depends on the control-
ler gain kc: 
– for smaller values of kc the sensitivity is small,
– for bigger values of gain kc is bigger.

•  For values of sample time Ts closer to maximal the cost func-
tion (23) has the minimum along the proportional gain kr. 

•  For the considered case extremes of cost function are local-
ized only in vertices of considered area of controller param-
eters Ps. 

Conclusions

The final conclusions from the paper can be formulated as fol-
lows:

–  Results of simulations show, that the sensitivity the con-
sidered cost function on uncertainty the control plant, de-
scribed by parameter q depends on the gain the controller.

–  The geometric interpretation of the cost function simplifies 
the localization of their minimum and allows to confirm the 
general analytical results.

–  As a subject of further considerations a deeper theoretical 
analysis of presented results is planned. Particularly – we 
plan to deal with the formulating analytical conditions de-
scribing the localization of extremes of the discussed cost 
function. 
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Figure 4. The spatial distribution of the cost function (23) considered in 
example
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