Markov inequality on the graph of holomorphic function
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1 Introduction

A few years after chemist Mendeleev published his periodic table he made a study
of the specific gravity of a solution as a function of the percentage of the dis-
solved substance. Mendeleev’s study led to the following mathematical problem:
estimate how large can be |P'(z)| on —1 < z < 1 for a quadratic polynomial
P(x) = ax®+bx+c with |P(x)| < 1for z € [—1, 1] (for details, how the Mendeleev’s
problem in Chemistry amounts to this mathematical problem in polynomials, see
[1]). Note that Mendeleev himself was able to solve this mathematical. Mendeleev
told his result to a Russian mathematician A.A. Markov, who naturally investi-
gated the corresponding problem in a more general setting, that is, for polynomials
of arbitrary degree n. He |2| proved the following result which is now known as
Markov inequality.

Theorem 1.1 Let P(z) =Y ,_, axz” be a real polynomial of degree n and
|P(2)|l=1, <1 (|- ||k s the mazimum norm on K ). Then

|P'(x)] <n? for —1<ax<l1. (1)

This result is best possible since for the Chebyshev polynomials Ty (x) = cos k arccos
(x € [-1,1]), k=1,2,..., of degree k one has ||T}|/=1,1) = 1 and |T},(£1)| = n*.

Markov’s inequality became soon a fascinating object of investigations. The
reason lay with its numerous applications in different domains of mathematics
and physics. Various analogues of the above Theorem are known in which the
underlying intervals, the maximum norms, and the family of functions are re-
placed by more general sets, norms, and families of functions, respectively. These
inequalities are called Markov-type inequalities. Markov-type inequalities are
known on various regions of the complex plane and the N-dimensional Euclidean
space, for various norms such as weighted LP norms, and for many classes of
functions such as polynomials with various constraints, exponential sums of n
terms, just to mention a few. Several papers have been published in this area (see
[3,4,5,6,7, 9,10, 13, 16, 17, 18, 19, 20, 21, 22, 26, 27, 28, 33, 34, 36]), and it is
not possible to include all of them here.
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In the sequel, a compact set F C K (K =R or C) is said to preserve (or admit)
Markov’s inequality, or simply to be Markov, if there exist constants M > 0 and
r > 0 such that for each polynomial P in R" we have

|D*P||g < M(deg P)"||P||g, forevery a=(ay,...,ayn)€ Név, (2)

where D% := % and |a] := ay + ...+ an. Sets with this property play
1 - 9%TN

an important role in the constructive theory of functions, especially in problems

of polynomial approximation and extension of C*° functions (see e.g. [12, 14, 24,

25, 29, 35]).

2 The Bernstein-Walsh-Siciak theorem

A function f: G — RU{—o0} with domain G C C¥ is called plurisubharmonic
if it is upper semi-continuous, and for every complex line {a + bz: z € C} ¢ CV
with a,b € CV the function 2z — f(a + bz) is a subharmonic function on the set
{z € C: a+ bz € G} (for more see [23]).

For a compact set K C CV, we define

Vie(2) = max {o, sup { de; S log | P(2) }}

where the supremum is taken over all non-constant polynomials P with ||P|| < 1.
This is a generalization of the one-variable Green function. The function Vi
is lower semicontinuous, but it need not be upper semicontinuous. The upper
semicontinuous regularization

Vi (2) = limsup Vg (()

(—z

of Vi is either identically 400 or else V; is plurisubharmonic. The first case
occurs if the set K is too "small"; precisely if K is pluripolar: this means that
there exists a plurisubharmonic function u defined in a neighborhood of K with
K C {z: u(z) = —o0}. We say that K is L-regular if Vi = V3, that is, if Vi is
continuous.

If the compact set K C C" is L-regular, then for each R > 1 we define the set

Dp :={z: Vk(2) < log R}. (3)
Now we are ready to formulate a famous Bernstein-Walsh-Siciak theorem (see [31]).

Theorem 2.1 Let K be an L-reqular compact set in CV. Let R > 1, and let Dg
be defined by (3). Let f be continuous on K. Then

limsup d,(f, K)"" <1/R

n—oo

of and only of f is the restriction to K of a function holomorphic in Dg, where

d(f, K) :=nf{||f = Pl[x: deg P <n}.
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3 Main result

It is known that the Holder continuity of Vi implies the Markov property of K
(see [32]) and every set which admit Markov inequality seems to be L-regular
but that has been proved so far only for compact subsets of R (see [11]). In the
general (complex) case the question about the L-regularity of sets with the global
Markov property remains an open problem posed by Plesniak in [29]. However,
every compact set K C C with the Markov property is not polar [8], which is a
necessary condition for the continuity of the Green function (see e.g. [30] Theorems
4.4.2,3). Our main result is related to the following open problem: Does Markov
inequality (2) imply that E is nonpluripolar?

Theorem 3.1 Let K be a compact subset of R. Let f: K — R be the restriction
to K of the holomorphic function defined on Dg := {z: Vk(2) < log R} for some
R > 1. Then a graph 'y := {(2, f(2)): z € K} of f does not admit Markov
inequality.

Proof. Suppose, seeking a contradiction, that I'y admits the Markov inequality.
There are now two cases:

Casel: The set K satisfies a Markov inequality. Hence K is L-regular. By
the Bernstein-Walsh-Siciak theorem there exist a sequence {p,} of polynomials
such that lim, . ||f — an}(/” < 1/R. Now consider the sequence of polynomials
P,(z,y) =y — pa(z). Tt is clear that

0P,
dy

= 1.
K

However,

| Pl < (1/R)" if n is large enough.
Therefore for every constants M > 0 and r > 0

M(deg P,)"||Pullk — 0 as n — oo.

This gives a contradiction, and the result is established.

Case2: The set K does not have a Markov property. In this case to get the
contradiction it is enough to take one variable polynomials.

Example. Let us consider the following set

K :={(z,e"): x € [0,1]}.

For this set it is enough to take

k n
T
pk(xay) =Y - E R
n=0
Then
k 00 0o
" " 1 el'(k+1,1)
e =l =35 =2 5| =2 =
| | |
n=0 " llog A=kt "l n=Re Lk +1)
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where
L(s,z) = / tte tdt.
Let
v(s,z) = / tte tdt.
0
Hence
F(S,.CE) = F(S) - 7(37 Z’)
Therefore
Il = 201D
METT TR +1)

And now, using (5.4) from [15] (see page 19), we have

v(k+1,1)

ThTD) <e(l—1/e)*

Ipxlle = e

This gives a contradiction with the Markov inequality for the set K.
Now a similar proof to that of the last theorem gives the following generaliza-
tion:

Theorem 3.2 Let K be a L-regular subset of CN. Let f: K — C be the restriction
to K of the holomorphic function defined on Dg := {z: Vk(2) < log R} for some
R > 1. Then a graph T'y := {(2, f(2)): z € K} of f does not admit Markov
inequality.

Note that each graph I'; is a pluripolar set. Therefore above theorem is a partially
solution to the difficult problem whether Markov property implies nonpluripolarity
(it N > 1).
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